論文の概要: CAISA at SemEval-2023 Task 8: Counterfactual Data Augmentation for
Mitigating Class Imbalance in Causal Claim Identification
- arxiv url: http://arxiv.org/abs/2306.00346v1
- Date: Thu, 1 Jun 2023 04:55:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 18:22:49.685216
- Title: CAISA at SemEval-2023 Task 8: Counterfactual Data Augmentation for
Mitigating Class Imbalance in Causal Claim Identification
- Title(参考訳): CAISA at SemEval-2023 Task 8: Counterfactual Data Augmentation for Mitigating Class Un Balance in Causal Claim Identification
- Authors: Akbar Karimi, Lucie Flek
- Abstract要約: 医学的クレームの識別のための動詞置換による新しいデータ拡張を提案する。
さらに,本手法の影響について検討し,他の3つのデータ拡張手法との比較を行った。
- 参考スコア(独自算出の注目度): 8.566457170664926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The class imbalance problem can cause machine learning models to produce an
undesirable performance on the minority class as well as the whole dataset.
Using data augmentation techniques to increase the number of samples is one way
to tackle this problem. We introduce a novel counterfactual data augmentation
by verb replacement for the identification of medical claims. In addition, we
investigate the impact of this method and compare it with 3 other data
augmentation techniques, showing that the proposed method can result in a
significant (relative) improvement in the minority class.
- Abstract(参考訳): クラス不均衡の問題は、機械学習モデルが少数派クラスとデータセット全体に対して望ましくないパフォーマンスをもたらす可能性がある。
データ拡張技術を使ってサンプル数を増やすことは、この問題に取り組む一つの方法です。
医療クレームの識別のために,動詞置換による反事実データ拡張を提案する。
また,提案手法がマイノリティクラスにおいて有意な(相対的な)改善をもたらすことを示すため,本手法の影響を調査し,他の3つのデータ拡張手法と比較した。
関連論文リスト
- DualAug: Exploiting Additional Heavy Augmentation with OOD Data
Rejection [77.6648187359111]
そこで本稿では,textbfDualAug という新しいデータ拡張手法を提案する。
教師付き画像分類ベンチマークの実験では、DualAugは様々な自動データ拡張法を改善している。
論文 参考訳(メタデータ) (2023-10-12T08:55:10Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Is augmentation effective to improve prediction in imbalanced text
datasets? [3.1690891866882236]
データ拡張なしでカットオフを調整することは、オーバーサンプリング手法と同じような結果をもたらすと我々は主張する。
この結果は、不均衡なデータを扱うための様々なアプローチの長所と短所の理解に寄与する。
論文 参考訳(メタデータ) (2023-04-20T13:07:31Z) - A review of ensemble learning and data augmentation models for class
imbalanced problems: combination, implementation and evaluation [0.196629787330046]
分類問題におけるクラス不均衡 (CI) は、あるクラスに属する観測回数が他のクラスよりも低い場合に生じる。
本稿では,ベンチマークCI問題に対処するために使用されるデータ拡張とアンサンブル学習手法を評価する。
論文 参考訳(メタデータ) (2023-04-06T04:37:10Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Effective Class-Imbalance learning based on SMOTE and Convolutional
Neural Networks [0.1074267520911262]
不均衡データ(ID)は、機械学習(ML)モデルから満足な結果を得るための問題である。
本稿では,Deep Neural Networks(DNN)とConvolutional Neural Networks(CNN)に基づく手法の有効性を検討する。
信頼性の高い結果を得るために,ランダムにシャッフルしたデータ分布を用いて100回実験を行った。
論文 参考訳(メタデータ) (2022-09-01T07:42:16Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
識別器が過度に適合する傾向があるため、限られたデータでGANを訓練することは困難である。
本稿では,拡張データの拡張パラメータを予測する,拡張型自己教師型識別器を提案する。
本稿では,クラス条件の BigGAN と非条件の StyleGAN2 アーキテクチャを用いた State-of-the-art (SOTA) 手法と比較する。
論文 参考訳(メタデータ) (2022-05-31T10:35:55Z) - Imbalanced Classification via Explicit Gradient Learning From Augmented
Data [0.0]
本稿では、与えられた不均衡なデータセットを新しいマイノリティインスタンスに拡張する、新しい深層メタラーニング手法を提案する。
提案手法の利点は, 種々の不均衡比を持つ合成および実世界のデータセット上で実証される。
論文 参考訳(メタデータ) (2022-02-21T22:16:50Z) - Solving the Class Imbalance Problem Using a Counterfactual Method for
Data Augmentation [4.454557728745761]
クラス不均衡データセットからの学習は、機械学習アルゴリズムに課題をもたらす。
我々は、マイノリティクラスにおける合成対実例を生成する新しいデータ拡張手法(eXplainable AIから適応)を推進している。
4つの異なる分類器と25のデータセットを用いたいくつかの実験を報告し、本手法(CFA)がマイノリティクラスで有用な合成データポイントを生成することを示す。
論文 参考訳(メタデータ) (2021-11-05T14:14:06Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
拡張データの情報を活用するために,新たなMI攻撃を提案する。
モデルが拡張データで訓練された場合、最適な会員推定値を確立する。
論文 参考訳(メタデータ) (2020-07-21T02:21:10Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。