Sharded Bayesian Additive Regression Trees
- URL: http://arxiv.org/abs/2306.00361v1
- Date: Thu, 1 Jun 2023 05:41:31 GMT
- Title: Sharded Bayesian Additive Regression Trees
- Authors: Hengrui Luo, Matthew T. Pratola
- Abstract summary: We introduce a randomization auxiliary variable and a sharding tree to decide partitioning of data.
By observing that the optimal design of a sharding tree can determine optimal sharding for sub-models on a product space, we introduce an intersection tree structure to completely specify both the sharding and modeling using only tree structures.
- Score: 1.4213973379473654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we develop the randomized Sharded Bayesian Additive Regression
Trees (SBT) model. We introduce a randomization auxiliary variable and a
sharding tree to decide partitioning of data, and fit each partition component
to a sub-model using Bayesian Additive Regression Tree (BART). By observing
that the optimal design of a sharding tree can determine optimal sharding for
sub-models on a product space, we introduce an intersection tree structure to
completely specify both the sharding and modeling using only tree structures.
In addition to experiments, we also derive the theoretical optimal weights for
minimizing posterior contractions and prove the worst-case complexity of SBT.
Related papers
- Terminating Differentiable Tree Experts [77.2443883991608]
We propose a neuro-symbolic Differentiable Tree Machine that learns tree operations using a combination of transformers and Representation Products.
We first remove a series of different transformer layers that are used in every step by introducing a mixture of experts.
We additionally propose a new termination algorithm to provide the model the power to choose how many steps to make automatically.
arXiv Detail & Related papers (2024-07-02T08:45:38Z) - Bayesian Decision Trees via Tractable Priors and Probabilistic
Context-Free Grammars [7.259767735431625]
We propose a new criterion for training Bayesian Decision Trees.
BCART-PCFG can efficiently sample decision trees from a posterior distribution across trees given the data.
We find that trees sampled via BCART-PCFG perform comparable to or better than greedily-constructed Decision Trees.
arXiv Detail & Related papers (2023-02-15T00:17:41Z) - RLET: A Reinforcement Learning Based Approach for Explainable QA with
Entailment Trees [47.745218107037786]
We propose RLET, a Reinforcement Learning based Entailment Tree generation framework.
RLET iteratively performs single step reasoning with sentence selection and deduction generation modules.
Experiments on three settings of the EntailmentBank dataset demonstrate the strength of using RL framework.
arXiv Detail & Related papers (2022-10-31T06:45:05Z) - Transition Matrix Representation of Trees with Transposed Convolutions [6.898853508108819]
We propose TART (Transition Matrix Representation with Transposed Convolutions) for optimal structural search.
TART represents a tree model with a series of transposed convolutions that boost the speed of inference.
As a result, TART allows one to search for the best tree structure with a few design parameters, achieving higher classification accuracy than those of baseline models in feature-based datasets.
arXiv Detail & Related papers (2022-02-22T05:40:31Z) - Robustifying Algorithms of Learning Latent Trees with Vector Variables [92.18777020401484]
We present the sample complexities of Recursive Grouping (RG) and Chow-Liu Recursive Grouping (CLRG)
We robustify RG, CLRG, Neighbor Joining (NJ) and Spectral NJ (SNJ) by using the truncated inner product.
We derive the first known instance-dependent impossibility result for structure learning of latent trees.
arXiv Detail & Related papers (2021-06-02T01:37:52Z) - Spectral Top-Down Recovery of Latent Tree Models [13.681975313065477]
Spectral Top-Down Recovery (STDR) is a divide-and-conquer approach for inference of large latent tree models.
STDR's partitioning step is non-random. Instead, it is based on the Fiedler vector of a suitable Laplacian matrix related to the observed nodes.
We prove that STDR is statistically consistent, and bound the number of samples required to accurately recover the tree with high probability.
arXiv Detail & Related papers (2021-02-26T02:47:42Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
We consider learning Ising tree models when the observations from the nodes are corrupted by independent but non-identically distributed noise.
Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a partial tree structure.
We propose Symmetrized Geometric Averaging (SGA), a more statistically robust algorithm for partial tree recovery.
arXiv Detail & Related papers (2021-01-22T01:57:35Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Convex Polytope Trees [57.56078843831244]
convex polytope trees (CPT) are proposed to expand the family of decision trees by an interpretable generalization of their decision boundary.
We develop a greedy method to efficiently construct CPT and scalable end-to-end training algorithms for the tree parameters when the tree structure is given.
arXiv Detail & Related papers (2020-10-21T19:38:57Z) - Spectral neighbor joining for reconstruction of latent tree models [5.229354894035374]
We develop Spectral Neighbor Joining, a novel method to recover the structure of latent tree graphical models.
We prove that SNJ is consistent, and derive a sufficient condition for correct tree recovery from an estimated similarity matrix.
We illustrate via extensive simulations that in comparison to several other reconstruction methods, SNJ requires fewer samples to accurately recover trees with a large number of leaves or long edges.
arXiv Detail & Related papers (2020-02-28T05:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.