Can a Single Tree Outperform an Entire Forest?
- URL: http://arxiv.org/abs/2411.17003v1
- Date: Tue, 26 Nov 2024 00:18:18 GMT
- Title: Can a Single Tree Outperform an Entire Forest?
- Authors: Qiangqiang Mao, Yankai Cao,
- Abstract summary: The prevailing mindset is that a single decision tree underperforms classic random forests in testing accuracy.
This study challenges such a mindset by significantly improving the testing accuracy of an oblique regression tree.
Our approach reformulates tree training as a differentiable unconstrained optimization task.
- Score: 5.448070998907116
- License:
- Abstract: The prevailing mindset is that a single decision tree underperforms classic random forests in testing accuracy, despite its advantages in interpretability and lightweight structure. This study challenges such a mindset by significantly improving the testing accuracy of an oblique regression tree through our gradient-based entire tree optimization framework, making its performance comparable to the classic random forest. Our approach reformulates tree training as a differentiable unconstrained optimization task, employing a scaled sigmoid approximation strategy. To ameliorate numerical instability, we propose an algorithmic scheme that solves a sequence of increasingly accurate approximations. Additionally, a subtree polish strategy is implemented to reduce approximation errors accumulated across the tree. Extensive experiments on 16 datasets demonstrate that our optimized tree outperforms the classic random forest by an average of $2.03\%$ improvements in testing accuracy.
Related papers
- Binary Classification: Is Boosting stronger than Bagging? [5.877778007271621]
We introduce Enhanced Random Forests, an extension of vanilla Random Forests with extra functionalities and adaptive sample and model weighting.
We develop an iterative algorithm for adapting the training sample weights, by favoring the hardest examples, and an approach for finding personalized tree weighting schemes for each new sample.
Our method significantly improves upon regular Random Forests across 15 different binary classification datasets and considerably outperforms other tree methods, including XGBoost.
arXiv Detail & Related papers (2024-10-24T23:22:33Z) - Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
We propose a Deep Tree-based Retriever (DTR) for efficient recommendation.
DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level.
To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function.
arXiv Detail & Related papers (2024-08-21T05:09:53Z) - Adaptive Split Balancing for Optimal Random Forest [8.916614661563893]
We propose a new random forest algorithm that constructs the trees using a novel adaptive split-balancing method.
Our method achieves optimality in simple, smooth scenarios while adaptively learning the tree structure from the data.
arXiv Detail & Related papers (2024-02-17T09:10:40Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
arXiv Detail & Related papers (2024-02-06T07:40:53Z) - Hierarchical Shrinkage: improving the accuracy and interpretability of
tree-based methods [10.289846887751079]
We introduce Hierarchical Shrinkage (HS), a post-hoc algorithm that does not modify the tree structure.
HS substantially increases the predictive performance of decision trees, even when used in conjunction with other regularization techniques.
All code and models are released in a full-fledged package available on Github.
arXiv Detail & Related papers (2022-02-02T02:43:23Z) - Optimal randomized classification trees [0.0]
Classification and Regression Trees (CARTs) are off-the-shelf techniques in modern Statistics and Machine Learning.
CARTs are built by means of a greedy procedure, sequentially deciding the splitting predictor variable(s) and the associated threshold.
This greedy approach trains trees very fast, but, by its nature, their classification accuracy may not be competitive against other state-of-the-art procedures.
arXiv Detail & Related papers (2021-10-19T11:41:12Z) - An Efficient Adversarial Attack for Tree Ensembles [91.05779257472675]
adversarial attacks on tree based ensembles such as gradient boosting decision trees (DTs) and random forests (RFs)
We show that our method can be thousands of times faster than the previous mixed-integer linear programming (MILP) based approach.
Our code is available at https://chong-z/tree-ensemble-attack.
arXiv Detail & Related papers (2020-10-22T10:59:49Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - Sparsity in Optimal Randomized Classification Trees [3.441021278275805]
We propose a continuous optimization approach to build sparse optimal classification trees, based on oblique cuts.
Both types of sparsity, namely local and global, are modeled by means of regularizations with polyhedral norms.
Unlike greedy approaches, our ability to easily trade in some of our classification accuracy for a gain in global sparsity is shown.
arXiv Detail & Related papers (2020-02-21T09:09:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.