論文の概要: A Survey on Fairness-aware Recommender Systems
- arxiv url: http://arxiv.org/abs/2306.00403v1
- Date: Thu, 1 Jun 2023 07:08:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 17:52:47.555635
- Title: A Survey on Fairness-aware Recommender Systems
- Title(参考訳): フェアネス対応レコメンダシステムに関する調査
- Authors: Di Jin, Luzhi Wang, He Zhang, Yizhen Zheng, Weiping Ding, Feng Xia,
Shirui Pan
- Abstract要約: 本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
- 参考スコア(独自算出の注目度): 59.23208133653637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As information filtering services, recommender systems have extremely
enriched our daily life by providing personalized suggestions and facilitating
people in decision-making, which makes them vital and indispensable to human
society in the information era. However, as people become more dependent on
them, recent studies show that recommender systems potentially own
unintentional impacts on society and individuals because of their unfairness
(e.g., gender discrimination in job recommendations). To develop trustworthy
services, it is crucial to devise fairness-aware recommender systems that can
mitigate these bias issues. In this survey, we summarise existing methodologies
and practices of fairness in recommender systems. Firstly, we present concepts
of fairness in different recommendation scenarios, comprehensively categorize
current advances, and introduce typical methods to promote fairness in
different stages of recommender systems. Next, after introducing datasets and
evaluation metrics applied to assess the fairness of recommender systems, we
will delve into the significant influence that fairness-aware recommender
systems exert on real-world industrial applications. Subsequently, we highlight
the connection between fairness and other principles of trustworthy recommender
systems, aiming to consider trustworthiness principles holistically while
advocating for fairness. Finally, we summarize this review, spotlighting
promising opportunities in comprehending concepts, frameworks, the balance
between accuracy and fairness, and the ties with trustworthiness, with the
ultimate goal of fostering the development of fairness-aware recommender
systems.
- Abstract(参考訳): 情報フィルタリングサービスとして、レコメンダシステムは、パーソナライズされた提案を提供し、意思決定を促進することによって、日々の生活を非常に豊かにしてきた。
しかし、人々がより依存するようになるにつれて、最近の研究では、リコメンダシステムは社会や個人に不公平さ(例えば、仕事の推薦における性差別)のために意図しない影響を与える可能性があることが示されている。
信頼に値するサービスを開発するためには、これらのバイアス問題を緩和できる公平さを意識したレコメンデーションシステムを考案することが不可欠である。
本稿では,推薦システムにおける既存手法とフェアネスの実践を要約する。
まず、異なるレコメンデーションシナリオにおける公平性の概念を示し、現在の進歩を包括的に分類し、レコメンデーションシステムの異なる段階で公平性を促進する典型的な方法を紹介する。
次に、レコメンダシステムの公正性を評価するために適用されるデータセットと評価指標を導入し、フェアネスを意識したレコメンダシステムが実世界の産業アプリケーションに与える影響について考察する。
続いて,公正を主張する一方で,信頼性の原則を体系的に検討することを目的とした,信頼に値するレコメンデーションシステムの他の原則との関係を強調する。
最後に,このレビューを要約し,概念の理解,フレームワーク,正確性と公平性のバランス,信頼性との相関性,公正を意識したレコメンデータシステムの開発を促進するという究極の目標を浮き彫りにした。
関連論文リスト
- Pessimistic Evaluation [58.736490198613154]
情報アクセスシステムの評価は,情報アクセスの伝統に沿わない実用的価値を前提としている。
我々は,最悪のケースユーティリティに着目した情報アクセスシステムの悲観的評価を提唱する。
論文 参考訳(メタデータ) (2024-10-17T15:40:09Z) - Consumer-side Fairness in Recommender Systems: A Systematic Survey of
Methods and Evaluation [1.4123323039043334]
機械学習手法における差別意識の高まりは、学界と産業の両方を動機付け、レコメンデーションシステムにおける公正性の確保について研究した。
推薦制度では、そのような問題は職業推薦によってよく例示されており、歴史的データの偏見は、1つの性別から低い賃金、あるいはステレオタイプの普及に関する推薦制度につながる可能性がある。
本調査は、リコメンデーションシステムにおける消費者側の公正性に関する現在の研究の体系的概要と議論である。
論文 参考訳(メタデータ) (2023-05-16T10:07:41Z) - A Comprehensive Survey on Trustworthy Recommender Systems [32.523177842969915]
本稿では,信頼に値するレコメンダシステム (TRec) の概要について概説する。
それぞれの側面について、最近の技術についてまとめ、信頼性の高いレコメンデータシステムの実現を支援する研究の方向性について論じる。
論文 参考訳(メタデータ) (2022-09-21T04:34:17Z) - Fairness in Recommendation: Foundations, Methods and Applications [38.63520487389138]
本調査は,レコメンデーション文学における公平性の基盤に焦点を当てたものである。
まず、分類やランキングといった基本的な機械学習タスクにおける公平性について簡単な紹介を行う。
その後、調査では、フェアネスの定義、フェアネスを改善するための典型的な技術、そして、フェアネス研究のためのデータセットに焦点をあてて、フェアネスを推奨する。
論文 参考訳(メタデータ) (2022-05-26T20:48:53Z) - Balancing Accuracy and Fairness for Interactive Recommendation with
Reinforcement Learning [68.25805655688876]
推薦者の公正さは、おそらく伝統的な推薦者によって引き起こされる偏見と差別によって、注目を集めている。
IRSにおける精度と公平性の長期的バランスを動的に維持するための強化学習ベースのフレームワークであるFairRecを提案する。
大規模な実験は、FairRecが優れたレコメンデーション品質を維持しながら、公正性を改善することを実証する。
論文 参考訳(メタデータ) (2021-06-25T02:02:51Z) - Towards Personalized Fairness based on Causal Notion [18.5897206797918]
本稿では,逆学習による対実的公正なレコメンデーションを実現するための枠組みを提案する。
提案手法は,推奨性能の高いユーザに対して,より公平なレコメンデーションを生成できる。
論文 参考訳(メタデータ) (2021-05-20T15:24:34Z) - Fairness and Transparency in Recommendation: The Users' Perspective [14.830700792215849]
公平性認識型レコメンダーシステムのユーザ視点について考察する。
フェアネス対応レコメンダーシステムのユーザ理解と信頼を向上させる3つの機能を提案します。
論文 参考訳(メタデータ) (2021-03-16T00:42:09Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
レコメンダーシステムにおけるバイアス管理の欠如は、少数派が不公平な勧告を受けることになる。
本稿では,ユーザの人口統計情報を知ることなく,公平さと正確さを最適なバランスで組み合わせたDeep Learningベースの協調フィルタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - Survey for Trust-aware Recommender Systems: A Deep Learning Perspective [48.2733163413522]
信頼できるレコメンデーションシステムを採用することが重要になります。
本調査では,信頼を意識したレコメンデータシステムの3つのカテゴリについて概説する。
論文 参考訳(メタデータ) (2020-04-08T02:11:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。