Chain-Of-Thought Prompting Under Streaming Batch: A Case Study
- URL: http://arxiv.org/abs/2306.00550v1
- Date: Thu, 1 Jun 2023 11:11:39 GMT
- Title: Chain-Of-Thought Prompting Under Streaming Batch: A Case Study
- Authors: Yuxin Tang
- Abstract summary: Chain-of-thought (CoT) has been proposed as a way of assisting Large Language Models (LLMs) in performing complex reasoning.
We present a case study on how to construct and optimize chain-of-thought prompting using batch data in streaming settings.
- Score: 0.7106986689736827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Large Language Models (LLMs) have demonstrated remarkable
capabilities. Chain-of-Thought (CoT) has been proposed as a way of assisting
LLMs in performing complex reasoning. However, developing effective prompts can
be a challenging and labor-intensive task. Many studies come out of some way to
automatically construct CoT from test data. Most of them assume that all test
data is visible before testing and only select a small subset to generate
rationales, which is an unrealistic assumption. In this paper, we present a
case study on how to construct and optimize chain-of-thought prompting using
batch data in streaming settings.
Related papers
- EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning [5.172620636569522]
Large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars)
A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic)
arXiv Detail & Related papers (2024-11-06T12:48:04Z) - Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension [9.67774998354062]
Previous research has primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation.
We propose a Premise-Oriented Data Augmentation (PODA) framework to generate CoT rationales including analyses for both correct and incorrect options.
We also introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples.
arXiv Detail & Related papers (2024-09-22T15:44:43Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook.
Fine-tuning language models (LLMs) leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance.
This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT.
arXiv Detail & Related papers (2024-06-13T14:07:02Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
Large language models (LLMs) have shown impressive capabilities in real-world applications.
The quality of these exemplars in the prompt greatly impacts performance.
Existing methods fail to adequately account for the impact of exemplar ordering on the performance.
arXiv Detail & Related papers (2024-05-25T08:23:05Z) - Test-Time Self-Adaptive Small Language Models for Question Answering [63.91013329169796]
We show and investigate the capabilities of smaller self-adaptive LMs, only with unlabeled test data.
Our proposed self-adaption strategy demonstrates significant performance improvements on benchmark QA datasets.
arXiv Detail & Related papers (2023-10-20T06:49:32Z) - MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering [64.6741991162092]
We present MinPrompt, a minimal data augmentation framework for open-domain question answering.
We transform the raw text into a graph structure to build connections between different factual sentences.
We then apply graph algorithms to identify the minimal set of sentences needed to cover the most information in the raw text.
We generate QA pairs based on the identified sentence subset and train the model on the selected sentences to obtain the final model.
arXiv Detail & Related papers (2023-10-08T04:44:36Z) - How Predictable Are Large Language Model Capabilities? A Case Study on
BIG-bench [52.11481619456093]
We study the performance prediction problem on experiment records from BIG-bench.
An $R2$ score greater than 95% indicates the presence of learnable patterns within the experiment records.
We find a subset as informative as BIG-bench Hard for evaluating new model families, while being $3times$ smaller.
arXiv Detail & Related papers (2023-05-24T09:35:34Z) - Active Prompting with Chain-of-Thought for Large Language Models [26.5029080638055]
This paper proposes a new method, Active-Prompt, to adapt large language models to different tasks.
By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty.
Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks.
arXiv Detail & Related papers (2023-02-23T18:58:59Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
We study the task of prompting large-scale language models to perform multi-step reasoning.
A central question is which reasoning examples make the most effective prompts.
We propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning.
arXiv Detail & Related papers (2022-10-03T05:33:27Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.