Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs
- URL: http://arxiv.org/abs/2406.09136v2
- Date: Thu, 31 Oct 2024 07:12:06 GMT
- Title: Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs
- Authors: Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, Min Lin,
- Abstract summary: Tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook.
Fine-tuning language models (LLMs) leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance.
This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT.
- Score: 37.147529569445396
- License:
- Abstract: The recent development of chain-of-thought (CoT) decoding has enabled large language models (LLMs) to generate explicit logical reasoning paths for complex problem-solving. However, research indicates that these paths are not always deliberate and optimal. The tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook. This deliberation, however, comes at the cost of significantly increased inference complexity. In this work, we demonstrate that fine-tuning LLMs leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance, thereby avoiding the substantial inference burden. This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT using the inherent preference information in the tree-search process. Extensive experimental results show that CPO significantly improves LLM performance in solving a variety of complex problems, including question answering, fact verification, and arithmetic reasoning, demonstrating its effectiveness. Our code is available at https://github.com/sail-sg/CPO.
Related papers
- SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs [48.28847964704554]
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks.
We propose a novel approach for continuous-space reasoning that does not require modifying the underlying LLM.
arXiv Detail & Related papers (2025-02-17T18:52:29Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs)
However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy?
In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - Pheromone-based Learning of Optimal Reasoning Paths [0.5662299435213421]
Ant Colony Optimization-guided Tree of Thought (ACO-ToT)
Ant Colony Optimization-guided Tree of Thought (ACO-ToT)
Ant Colony Optimization-guided Tree of Thought (ACO-ToT)
arXiv Detail & Related papers (2025-01-31T16:42:31Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)
FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.
We introduce a dynamic self-correction strategy that enables real-time error correction, along with consensus-guided decision-making strategies.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs)
In this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges.
arXiv Detail & Related papers (2024-10-08T05:26:28Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs)
We show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks.
arXiv Detail & Related papers (2024-09-18T17:55:00Z) - Chain-of-Thought Reasoning Without Prompting [40.92854235219315]
CoT reasoning paths can be elicited from pre-trained language models by simply altering the textitdecoding process.
The presence of a CoT in the decoding path correlates with a higher confidence in the model's decoded answer.
arXiv Detail & Related papers (2024-02-15T18:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.