We never go out of Style: Motion Disentanglement by Subspace
Decomposition of Latent Space
- URL: http://arxiv.org/abs/2306.00559v1
- Date: Thu, 1 Jun 2023 11:18:57 GMT
- Title: We never go out of Style: Motion Disentanglement by Subspace
Decomposition of Latent Space
- Authors: Rishubh Parihar, Raghav Magazine, Piyush Tiwari, R. Venkatesh Babu
- Abstract summary: We propose a novel method to decompose motion in videos by using a pretrained image GAN model.
We discover disentangled motion subspaces in the latent space of widely used style-based GAN models.
We evaluate the disentanglement properties of motion subspaces on face and car datasets.
- Score: 38.54517335215281
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Real-world objects perform complex motions that involve multiple independent
motion components. For example, while talking, a person continuously changes
their expressions, head, and body pose. In this work, we propose a novel method
to decompose motion in videos by using a pretrained image GAN model. We
discover disentangled motion subspaces in the latent space of widely used
style-based GAN models that are semantically meaningful and control a single
explainable motion component. The proposed method uses only a few $(\approx10)$
ground truth video sequences to obtain such subspaces. We extensively evaluate
the disentanglement properties of motion subspaces on face and car datasets,
quantitatively and qualitatively. Further, we present results for multiple
downstream tasks such as motion editing, and selective motion transfer, e.g.
transferring only facial expressions without training for it.
Related papers
- Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion [9.134743677331517]
We propose a pre-trained image-to-video model to disentangle appearance from motion.
Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input.
By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity.
Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks.
arXiv Detail & Related papers (2024-08-01T10:55:20Z) - Monkey See, Monkey Do: Harnessing Self-attention in Motion Diffusion for Zero-shot Motion Transfer [55.109778609058154]
Existing diffusion-based motion editing methods overlook the profound potential of the prior embedded within the weights of pre-trained models.
We uncover the roles and interactions of attention elements in capturing and representing motion patterns.
We integrate these elements to transfer a leader motion to a follower one while maintaining the nuanced characteristics of the follower, resulting in zero-shot motion transfer.
arXiv Detail & Related papers (2024-06-10T17:47:14Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
We introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM) for text-to-motion generation.
M2DM incorporates a global self-attention mechanism and a regularization term to counteract code collapse.
We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token.
arXiv Detail & Related papers (2023-08-28T10:40:16Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - Self-supervised Motion Learning from Static Images [36.85209332144106]
Motion from Static Images (MoSI) learns to encode motion information.
MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
We demonstrate that MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
arXiv Detail & Related papers (2021-04-01T03:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.