Universal Humanoid Motion Representations for Physics-Based Control
- URL: http://arxiv.org/abs/2310.04582v2
- Date: Fri, 12 Apr 2024 03:33:31 GMT
- Title: Universal Humanoid Motion Representations for Physics-Based Control
- Authors: Zhengyi Luo, Jinkun Cao, Josh Merel, Alexander Winkler, Jing Huang, Kris Kitani, Weipeng Xu,
- Abstract summary: We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
- Score: 71.46142106079292
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control. Due to the high dimensionality of humanoids and the inherent difficulties in reinforcement learning, prior methods have focused on learning skill embeddings for a narrow range of movement styles (e.g. locomotion, game characters) from specialized motion datasets. This limited scope hampers their applicability in complex tasks. We close this gap by significantly increasing the coverage of our motion representation space. To achieve this, we first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset. We then create our motion representation by distilling skills directly from the imitator. This is achieved by using an encoder-decoder structure with a variational information bottleneck. Additionally, we jointly learn a prior conditioned on proprioception (humanoid's own pose and velocities) to improve model expressiveness and sampling efficiency for downstream tasks. By sampling from the prior, we can generate long, stable, and diverse human motions. Using this latent space for hierarchical RL, we show that our policies solve tasks using human-like behavior. We demonstrate the effectiveness of our motion representation by solving generative tasks (e.g. strike, terrain traversal) and motion tracking using VR controllers.
Related papers
- FreeMotion: MoCap-Free Human Motion Synthesis with Multimodal Large Language Models [19.09048969615117]
We explore open-set human motion synthesis using natural language instructions as user control signals based on MLLMs.
Our method can achieve general human motion synthesis for many downstream tasks.
arXiv Detail & Related papers (2024-06-15T21:10:37Z) - Monkey See, Monkey Do: Harnessing Self-attention in Motion Diffusion for Zero-shot Motion Transfer [55.109778609058154]
Existing diffusion-based motion editing methods overlook the profound potential of the prior embedded within the weights of pre-trained models.
We uncover the roles and interactions of attention elements in capturing and representing motion patterns.
We integrate these elements to transfer a leader motion to a follower one while maintaining the nuanced characteristics of the follower, resulting in zero-shot motion transfer.
arXiv Detail & Related papers (2024-06-10T17:47:14Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - Human MotionFormer: Transferring Human Motions with Vision Transformers [73.48118882676276]
Human motion transfer aims to transfer motions from a target dynamic person to a source static one for motion synthesis.
We propose Human MotionFormer, a hierarchical ViT framework that leverages global and local perceptions to capture large and subtle motion matching.
Experiments show that our Human MotionFormer sets the new state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2023-02-22T11:42:44Z) - MotionBERT: A Unified Perspective on Learning Human Motion
Representations [46.67364057245364]
We present a unified perspective on tackling various human-centric video tasks by learning human motion representations from large-scale and heterogeneous data resources.
We propose a pretraining stage in which a motion encoder is trained to recover the underlying 3D motion from noisy partial 2D observations.
We implement motion encoder with a Dual-stream Spatio-temporal Transformer (DSTformer) neural network.
arXiv Detail & Related papers (2022-10-12T19:46:25Z) - Task-Generic Hierarchical Human Motion Prior using VAEs [44.356707509079044]
A deep generative model that describes human motions can benefit a wide range of fundamental computer vision and graphics tasks.
We present a method for learning complex human motions independent of specific tasks using a combined global and local latent space.
We demonstrate the effectiveness of our hierarchical motion variational autoencoder in a variety of tasks including video-based human pose estimation.
arXiv Detail & Related papers (2021-06-07T23:11:42Z) - Character Controllers Using Motion VAEs [9.806910643086045]
We learn data-driven generative models of human movement using Motion VAEs.
Planning or control algorithms can then use this action space to generate desired motions.
arXiv Detail & Related papers (2021-03-26T05:51:41Z) - UniCon: Universal Neural Controller For Physics-based Character Motion [70.45421551688332]
We propose a physics-based universal neural controller (UniCon) that learns to master thousands of motions with different styles by learning on large-scale motion datasets.
UniCon can support keyboard-driven control, compose motion sequences drawn from a large pool of locomotion and acrobatics skills and teleport a person captured on video to a physics-based virtual avatar.
arXiv Detail & Related papers (2020-11-30T18:51:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.