Effective Structured Prompting by Meta-Learning and Representative Verbalizer
- URL: http://arxiv.org/abs/2306.00618v2
- Date: Thu, 21 Mar 2024 13:37:23 GMT
- Title: Effective Structured Prompting by Meta-Learning and Representative Verbalizer
- Authors: Weisen Jiang, Yu Zhang, James T. Kwok,
- Abstract summary: We propose MetaPrompter for effective structured prompting.
We propose a novel soft verbalizer (RepVerb) which constructs label embedding from feature embeddings directly.
Experimental results demonstrate that MetaPrompter performs better than the recent state-of-the-arts.
- Score: 27.64413828719264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt tuning for pre-trained masked language models (MLM) has shown promising performance in natural language processing tasks with few labeled examples. It tunes a prompt for the downstream task, and a verbalizer is used to bridge the predicted token and label prediction. Due to the limited training data, prompt initialization is crucial for prompt tuning. Recently, MetaPrompting (Hou et al., 2022) uses meta-learning to learn a shared initialization for all task-specific prompts. However, a single initialization is insufficient to obtain good prompts for all tasks and samples when the tasks are complex. Moreover, MetaPrompting requires tuning the whole MLM, causing a heavy burden on computation and memory as the MLM is usually large. To address these issues, we use a prompt pool to extract more task knowledge and construct instance-dependent prompts via attention. We further propose a novel soft verbalizer (RepVerb) which constructs label embedding from feature embeddings directly. Combining meta-learning the prompt pool and RepVerb, we propose MetaPrompter for effective structured prompting. MetaPrompter is parameter-efficient as only the pool is required to be tuned. Experimental results demonstrate that MetaPrompter performs better than the recent state-of-the-arts and RepVerb outperforms existing soft verbalizers.
Related papers
- Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models [54.272894325370956]
We present Promptriever, the first retrieval model able to be prompted like an LM.
Promptriever achieves strong performance on standard retrieval tasks, and also follows instructions.
arXiv Detail & Related papers (2024-09-17T12:42:55Z) - On Meta-Prompting [18.949285430843695]
We call these approaches meta-prompting, or prompting to obtain prompts.
We propose a theoretical framework based on category theory to generalize and describe them.
arXiv Detail & Related papers (2023-12-11T17:46:44Z) - STPrompt: Semantic-guided and Task-driven prompts for Effective Few-shot
Classification [5.6205035780719275]
We propose the STPrompt -Semantic-guided and Task-driven Prompt model.
The proposed model achieves the state-of-the-art performance in five different datasets of few-shot text classification tasks.
arXiv Detail & Related papers (2022-10-29T04:42:30Z) - MetaPrompting: Learning to Learn Better Prompts [52.914694884515534]
We propose a new soft prompting method called MetaPrompting, which adopts the well-recognized model-agnostic meta-learning algorithm.
Extensive experiments show MetaPrompting brings significant improvement on four different datasets.
arXiv Detail & Related papers (2022-09-23T09:01:05Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Learning a Better Initialization for Soft Prompts via Meta-Learning [58.53984967461313]
We propose MetaPT (Meta-learned Prompt Tuning) to improve prompt tuning.
We introduce the structure by first clustering pre-training data into different auxiliary tasks.
We use these tasks to pre-train prompts with a meta-learning algorithm.
arXiv Detail & Related papers (2022-05-25T03:50:23Z) - PromptDA: Label-guided Data Augmentation for Prompt-based Few-shot
Learners [15.130992223266734]
We propose a novel label-guided data augmentation framework, PromptDA, which exploits the enriched label semantic information for data augmentation.
Our experiment results on few-shot text classification tasks demonstrate the superior performance of the proposed framework.
arXiv Detail & Related papers (2022-05-18T22:15:20Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuning is a new, efficient NLP transfer learning paradigm that adds a task-specific prompt in each input instance during the model training stage.
We propose a conditional prompt generation method to generate prompts for each input instance.
arXiv Detail & Related papers (2022-04-09T15:45:27Z) - OpenPrompt: An Open-source Framework for Prompt-learning [59.17869696803559]
We present OpenPrompt, a unified easy-to-use toolkit to conduct prompt-learning over PLMs.
OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility.
arXiv Detail & Related papers (2021-11-03T03:31:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.