論文の概要: Factors Impacting the Quality of User Answers on Smartphones
- arxiv url: http://arxiv.org/abs/2306.00627v2
- Date: Mon, 12 Jun 2023 09:10:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 23:24:26.219956
- Title: Factors Impacting the Quality of User Answers on Smartphones
- Title(参考訳): スマートフォンにおけるユーザ回答の品質に影響を及ぼす要因
- Authors: Ivano Bison, Haonan Zhao
- Abstract要約: 本稿では,ユーザが現在の状況について尋ねられるとき,応答の質に影響を与える要因を特定することを目的とする。
ユーザの反応時間と完了時間という,2つの重要な要因が応答の質に影響を与えることが分かりました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: So far, most research investigating the predictability of human behavior,
such as mobility and social interactions, has focused mainly on the
exploitation of sensor data. However, sensor data can be difficult to capture
the subjective motivations behind the individuals' behavior. Understanding
personal context (e.g., where one is and what they are doing) can greatly
increase predictability. The main limitation is that human input is often
missing or inaccurate. The goal of this paper is to identify factors that
influence the quality of responses when users are asked about their current
context. We find that two key factors influence the quality of responses: user
reaction time and completion time. These factors correlate with various
exogenous causes (e.g., situational context, time of day) and endogenous causes
(e.g., procrastination attitude, mood). In turn, we study how these two factors
impact the quality of responses.
- Abstract(参考訳): これまでのところ、移動性や社会的相互作用といった人間の行動の予測可能性に関する研究は、主にセンサデータの利用に焦点を当てている。
しかし,センサデータは,個人の行動の背後にある主観的動機を捉えることが困難である。
個人的コンテキスト(例えば、どこにいて、何をしているのか)を理解することは、予測可能性を大きく向上させる。
主な制限は、人間の入力がしばしば欠落または不正確であることである。
本研究の目的は,ユーザが現在の状況について質問した場合の応答品質に影響を与える要因を特定することである。
ユーザの反応時間と完了時間という,2つの重要な要因が応答の質に影響を与えることが分かりました。
これらの要因は、様々な外因性原因(状況状況、日時など)と内因性要因(先天的態度、気分など)と相関する。
この2つの要因が反応の質に与える影響について検討する。
関連論文リスト
- Unveiling the Secrets of Engaging Conversations: Factors that Keep Users
Hooked on Role-Playing Dialog Agents [17.791787477586574]
ボットが果たす役割を具現化する程度は保持率に限られた影響を与え、各ターンの長さは保持率に大きく影響する。
本研究は,ロールプレイングモデルによるユーザエンゲージメントの重要な側面を明らかにし,ロールプレイング目的の大規模言語モデルの開発において,今後の改善に向けた貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-02-18T09:42:41Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - Overinformative Question Answering by Humans and Machines [26.31070412632125]
人間の回答における過剰な表現性は、質問者の目標に対する関連性を考えることによって引き起こされることを示す。
本研究は, GPT-3が, 実例と認知動機のある説明によって導かれるときの, 刺激的かつ人間的な回答パターンの形式に非常に敏感であることを示す。
論文 参考訳(メタデータ) (2023-05-11T21:41:41Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - CARE: Causality Reasoning for Empathetic Responses by Conditional Graph Generation [10.22893584383361]
因果推論のための新しいモデル、すなわち条件変分グラフオートエンコーダ(CVGAE)を開発した。
この枠組み全体をCARE(CAusality Reasoning for Empathetic conversation)と命名した。
実験結果から,本手法は最先端性能を実現することが示唆された。
論文 参考訳(メタデータ) (2022-11-01T03:45:26Z) - I am Only Happy When There is Light: The Impact of Environmental Changes
on Affective Facial Expressions Recognition [65.69256728493015]
本研究では,異なる画像条件が人間の表情からの覚醒の認識に与える影響について検討した。
以上の結果から,人間の感情状態の解釈が肯定的,否定的に大きく異なることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:28:26Z) - Understanding How People Rate Their Conversations [73.17730062864314]
我々は、人々が会話エージェントとのインタラクションをどのように評価するかをよりよく理解するために研究を行う。
我々は、評価の変動を説明する変数として、同意性と外向性に焦点を当てる。
論文 参考訳(メタデータ) (2022-06-01T00:45:32Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Generalizing Fairness: Discovery and Mitigation of Unknown Sensitive
Attributes [5.665283675533071]
本稿では,特定のデータセットから個々のセマンティックセンシティブな要因を分離し,その特徴付けを行う手法について検討する。
また、通常、社会的に関係のある要素にのみ対応し、AIの脱感作に対処するフェアネスの是正も行います。
道路標識 (GTSRB) と顔画像 (CelebA) のデータセットを用いた実験では, この方式を用いることの約束を示す。
論文 参考訳(メタデータ) (2021-07-28T20:18:08Z) - Impact of Spatial Frequency Based Constraints on Adversarial Robustness [0.49478969093606673]
敵対的な例は、人間が敏感でない入力ピクセルの変更を主に利用し、モデルは解釈不能な特徴に基づいて決定するという事実から生じる。
本稿では,異なる空間周波数範囲に対応する情報を活用するために,訓練中に実施されるモデルの対向的摂動に対する頑健性について検討する。
論文 参考訳(メタデータ) (2021-04-26T16:12:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。