論文の概要: Wuerstchen: Efficient Pretraining of Text-to-Image Models
- arxiv url: http://arxiv.org/abs/2306.00637v1
- Date: Thu, 1 Jun 2023 13:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 16:13:48.544667
- Title: Wuerstchen: Efficient Pretraining of Text-to-Image Models
- Title(参考訳): Wuerstchen: テキスト-画像モデルの効率的な事前学習
- Authors: Pablo Pernias, Dominic Rampas and Marc Aubreville
- Abstract要約: Wuerstchenは、競争性能と前例のないコスト効率を一体化する、テキストと画像の合成の新技術である。
Wuerstchenは推論時に顕著なスピード改善を行い、リアルタイムアプリケーションをより有効にレンダリングする。
- 参考スコア(独自算出の注目度): 0.8250374560598496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Wuerstchen, a novel technique for text-to-image synthesis that
unites competitive performance with unprecedented cost-effectiveness and ease
of training on constrained hardware. Building on recent advancements in machine
learning, our approach, which utilizes latent diffusion strategies at strong
latent image compression rates, significantly reduces the computational burden,
typically associated with state-of-the-art models, while preserving, if not
enhancing, the quality of generated images. Wuerstchen achieves notable speed
improvements at inference time, thereby rendering real-time applications more
viable. One of the key advantages of our method lies in its modest training
requirements of only 9,200 GPU hours, slashing the usual costs significantly
without compromising the end performance. In a comparison against the
state-of-the-art, we found the approach to yield strong competitiveness. This
paper opens the door to a new line of research that prioritizes both
performance and computational accessibility, hence democratizing the use of
sophisticated AI technologies. Through Wuerstchen, we demonstrate a compelling
stride forward in the realm of text-to-image synthesis, offering an innovative
path to explore in future research.
- Abstract(参考訳): 本稿では,競争性能と前例のないコスト効率と制約付きハードウェアのトレーニングの容易さを組み合わせた,テキストから画像への合成技術であるwwerstchenを紹介する。
機械学習の最近の進歩を基盤として,強力な遅延画像圧縮速度で潜時拡散戦略を利用する手法は,画像の質を保ちながら,通常最先端のモデルと関連する計算負担を大幅に削減する。
Wuerstchenは推論時に顕著なスピード改善を実現し、リアルタイムアプリケーションをより有効にレンダリングする。
我々の方法の主な利点の1つは、わずか9,200GPU時間という控えめなトレーニング要件であり、最終的なパフォーマンスを損なうことなく、通常のコストを大幅に削減する。
state-of-the-artとの比較で、強い競争力を得るためのアプローチを見出した。
本稿では、パフォーマンスと計算アクセシビリティの両方を優先し、高度なAI技術の利用を民主化する新しい研究の道を開く。
Wuerstchenを通じて、テキストと画像の合成という領域における魅力的な進歩を実証し、将来の研究を探求する革新的な道筋を提供する。
関連論文リスト
- YaART: Yet Another ART Rendering Technology [119.09155882164573]
そこで本研究では,ヒトの嗜好に適合する新しい生産段階のテキスト・ツー・イメージ拡散モデルYaARTを紹介した。
これらの選択がトレーニングプロセスの効率と生成された画像の品質にどのように影響するかを分析する。
高品質な画像の小さなデータセットでトレーニングされたモデルが、より大きなデータセットでトレーニングされたモデルとうまく競合できることを実証する。
論文 参考訳(メタデータ) (2024-04-08T16:51:19Z) - SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions [5.100085108873068]
SDXS-512 と SDXS-1024 の2つのモデルを示し,1つのGPU上で約100 FPS (SD v1.5 より30倍速い) と30 FPS (SDXLより60倍速い) の推論速度を実現する。
我々のトレーニングアプローチは、画像条件付き制御に有望な応用を提供し、画像間の効率的な翻訳を容易にする。
論文 参考訳(メタデータ) (2024-03-25T11:16:23Z) - Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers [120.49126407479717]
本稿では,ゼロショットスケッチに基づく画像検索(ZS-SBIR)のためのテキスト・画像拡散モデルについて検討する。
スケッチと写真の間のギャップをシームレスに埋めるテキストと画像の拡散モデルの能力。
論文 参考訳(メタデータ) (2024-03-12T00:02:03Z) - E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
拡散モデルからGANを蒸留するプロセスは、より効率的にできるのか?
まず、一般化された特徴を持つベースGANモデルを構築し、微調整により異なる概念に適応し、スクラッチからトレーニングの必要性を排除した。
第2に,ベースモデル全体の微調整を行うのではなく,低ランク適応(LoRA)を簡易かつ効果的なランク探索プロセスで行う。
第3に、微調整に必要な最小限のデータ量を調査し、トレーニング時間を短縮する。
論文 参考訳(メタデータ) (2024-01-11T18:59:14Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
本稿では,拡散過程下での1つのフレームワークに,モダクティブと差別的事前学習を統一するDiffDisを提案する。
DiffDisは画像生成タスクと画像テキスト識別タスクの両方において単一タスクモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T05:03:48Z) - SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two
Seconds [88.06788636008051]
テキストから画像への拡散モデルは、プロのアーティストや写真家の作品に匹敵する自然言語の記述から素晴らしい画像を作り出すことができる。
これらのモデルは大規模で、複雑なネットワークアーキテクチャと数十のデノベーションイテレーションを持ち、計算コストが高く、実行が遅い。
モバイル端末上でテキストから画像への拡散モデルの実行を2ドル以下でアンロックする汎用的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-01T17:59:25Z) - Joint Adaptive Representations for Image-Language Learning [59.40890927221377]
画像言語学習のためのレシピを提案し、より大きくて高価なものよりも優れたモデルを作成し、しばしば桁違いに大きなデータセットで訓練する。
我々の重要な発見は、適応的かつ反復的にマルチモーダルな特徴を融合させる、コンパクトな視覚と言語表現の連成学習である。
たった4000万のトレーニング例と39のGFLOPで、私たちの軽量モデルは、2~20倍以上のFLOPの最先端モデルで、さらに大きなデータセットを使用して、1B近くのトレーニング例で何倍もパフォーマンスを上げています。
論文 参考訳(メタデータ) (2023-05-31T15:02:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。