Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise
- URL: http://arxiv.org/abs/2306.00673v2
- Date: Tue, 19 Mar 2024 15:01:36 GMT
- Title: Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise
- Authors: Shiwei Zeng, Jie Shen,
- Abstract summary: We study PAC learning of $K$sparse degree-$d$ PTFs on $mathbbRn$.
Our main contribution is a new algorithm that runs in time $(nd/epsilon)O(d)$.
PAC learns the class up to error rate $epsilon$ with $O(fracK4depsilon2d cdot log5d n)$ even when an $eta leq O(epsilond)
- Score: 10.550885570889527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept class of low-degree polynomial threshold functions (PTFs) plays a fundamental role in machine learning. In this paper, we study PAC learning of $K$-sparse degree-$d$ PTFs on $\mathbb{R}^n$, where any such concept depends only on $K$ out of $n$ attributes of the input. Our main contribution is a new algorithm that runs in time $({nd}/{\epsilon})^{O(d)}$ and under the Gaussian marginal distribution, PAC learns the class up to error rate $\epsilon$ with $O(\frac{K^{4d}}{\epsilon^{2d}} \cdot \log^{5d} n)$ samples even when an $\eta \leq O(\epsilon^d)$ fraction of them are corrupted by the nasty noise of Bshouty et al. (2002), possibly the strongest corruption model. Prior to this work, attribute-efficient robust algorithms are established only for the special case of sparse homogeneous halfspaces. Our key ingredients are: 1) a structural result that translates the attribute sparsity to a sparsity pattern of the Chow vector under the basis of Hermite polynomials, and 2) a novel attribute-efficient robust Chow vector estimation algorithm which uses exclusively a restricted Frobenius norm to either certify a good approximation or to validate a sparsity-induced degree-$2d$ polynomial as a filter to detect corrupted samples.
Related papers
- Fast Rates for Bandit PAC Multiclass Classification [73.17969992976501]
We study multiclass PAC learning with bandit feedback, where inputs are classified into one of $K$ possible labels and feedback is limited to whether or not the predicted labels are correct.
Our main contribution is in designing a novel learning algorithm for the agnostic $(varepsilon,delta)$PAC version of the problem.
arXiv Detail & Related papers (2024-06-18T08:54:04Z) - Super Non-singular Decompositions of Polynomials and their Application to Robustly Learning Low-degree PTFs [39.468324211376505]
We study the efficient learnability of low-degree threshold functions (PTFs) in the presence of a constant fraction of adversarial corruptions.
Our algorithm employs an iterative approach inspired by localization techniques previously used in the context of learning linear threshold functions.
arXiv Detail & Related papers (2024-03-31T02:03:35Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - List-Decodable Sparse Mean Estimation [7.594050968868919]
A surge of recent research interest has been focusing on the list-decodable setting where $alpha in (0, frac12]$, and the goal is to output a finite number of estimates among which at least one approximates the target mean.
In this paper, we consider that the underlying target is the mean distribution $k$ and the first contribution is the first sample $Obig(mathrmpoly(k, log dbig)$, i.e. poly-logarithmic in the dimension dimension.
arXiv Detail & Related papers (2022-05-28T05:13:45Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - A Polynomial Time Algorithm for Learning Halfspaces with Tsybakov Noise [55.45544638410858]
We study the problem of PAC learning homogeneous halfspaces in the presence of Tsybakov noise.
Our algorithm learns the true halfspace within any accuracy $epsilon$.
arXiv Detail & Related papers (2020-10-04T22:19:06Z) - Robust Sub-Gaussian Principal Component Analysis and Width-Independent
Schatten Packing [22.337756118270217]
We develop two methods for a fundamental statistical task: given an $epsilon$-corrupted set of $n$ samples from a $d$-linear sub-Gaussian distribution.
Our first robust algorithm runs iterative filtering in time, returns an approximate eigenvector, and is based on a simple filtering approach.
Our second, which attains a slightly worse approximation factor, runs in nearly-trivial time and iterations under a mild spectral gap assumption.
arXiv Detail & Related papers (2020-06-12T07:45:38Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.