Robust Sub-Gaussian Principal Component Analysis and Width-Independent
Schatten Packing
- URL: http://arxiv.org/abs/2006.06980v1
- Date: Fri, 12 Jun 2020 07:45:38 GMT
- Title: Robust Sub-Gaussian Principal Component Analysis and Width-Independent
Schatten Packing
- Authors: Arun Jambulapati, Jerry Li, Kevin Tian
- Abstract summary: We develop two methods for a fundamental statistical task: given an $epsilon$-corrupted set of $n$ samples from a $d$-linear sub-Gaussian distribution.
Our first robust algorithm runs iterative filtering in time, returns an approximate eigenvector, and is based on a simple filtering approach.
Our second, which attains a slightly worse approximation factor, runs in nearly-trivial time and iterations under a mild spectral gap assumption.
- Score: 22.337756118270217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop two methods for the following fundamental statistical task: given
an $\epsilon$-corrupted set of $n$ samples from a $d$-dimensional sub-Gaussian
distribution, return an approximate top eigenvector of the covariance matrix.
Our first robust PCA algorithm runs in polynomial time, returns a $1 -
O(\epsilon\log\epsilon^{-1})$-approximate top eigenvector, and is based on a
simple iterative filtering approach. Our second, which attains a slightly worse
approximation factor, runs in nearly-linear time and sample complexity under a
mild spectral gap assumption. These are the first polynomial-time algorithms
yielding non-trivial information about the covariance of a corrupted
sub-Gaussian distribution without requiring additional algebraic structure of
moments. As a key technical tool, we develop the first width-independent
solvers for Schatten-$p$ norm packing semidefinite programs, giving a $(1 +
\epsilon)$-approximate solution in
$O(p\log(\tfrac{nd}{\epsilon})\epsilon^{-1})$ input-sparsity time iterations
(where $n$, $d$ are problem dimensions).
Related papers
- Sum-of-squares lower bounds for Non-Gaussian Component Analysis [33.80749804695003]
Non-Gaussian Component Analysis (NGCA) is the statistical task of finding a non-Gaussian direction in a high-dimensional dataset.
Here we study the complexity of NGCA in the Sum-of-Squares framework.
arXiv Detail & Related papers (2024-10-28T18:19:13Z) - Efficient Statistics With Unknown Truncation, Polynomial Time Algorithms, Beyond Gaussians [7.04316974339151]
We study the estimation of distributional parameters when samples are shown only if they fall in some unknown set.
We develop tools that may be of independent interest, including a reduction from PAC learning with positive and unlabeled samples to PAC learning with positive and negative samples.
arXiv Detail & Related papers (2024-10-02T15:21:07Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean
Estimation and Linear Regression [44.13655983242414]
We design the first sample near- and almost linear-time algorithms with optimal error guarantees.
For robust linear regression, we give the first algorithm with sample complexity $n = tildeO(d/epsilon2)$ and almost linear runtime that approximates the target regressor within $ell$- $O(epsilon)$.
This is the first sample and time algorithm achieving the optimal error guarantee, answering an open question in the literature.
arXiv Detail & Related papers (2023-12-04T00:31:16Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Leverage Score Sampling for Tensor Product Matrices in Input Sparsity
Time [54.65688986250061]
We give an input sparsity time sampling algorithm for approximating the Gram matrix corresponding to the $q$-fold column-wise tensor product of $q$ matrices.
Our sampling technique relies on a collection of $q$ partially correlated random projections which can be simultaneously applied to a dataset $X$ in total time.
arXiv Detail & Related papers (2022-02-09T15:26:03Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.