論文の概要: Adversarial Robustness in Unsupervised Machine Learning: A Systematic
Review
- arxiv url: http://arxiv.org/abs/2306.00687v1
- Date: Thu, 1 Jun 2023 13:59:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 15:55:35.063520
- Title: Adversarial Robustness in Unsupervised Machine Learning: A Systematic
Review
- Title(参考訳): 教師なし機械学習における対人ロバスト性:システムレビュー
- Authors: Mathias Lundteigen Mohus and Jinyue Li
- Abstract要約: 本稿では,教師なし学習の堅牢性に関する体系的な文献レビューを行う。
この結果に基づいて,教師なし学習に対する攻撃特性のモデルを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the adoption of machine learning models increases, ensuring robust models
against adversarial attacks is increasingly important. With unsupervised
machine learning gaining more attention, ensuring it is robust against attacks
is vital. This paper conducts a systematic literature review on the robustness
of unsupervised learning, collecting 86 papers. Our results show that most
research focuses on privacy attacks, which have effective defenses; however,
many attacks lack effective and general defensive measures. Based on the
results, we formulate a model on the properties of an attack on unsupervised
learning, contributing to future research by providing a model to use.
- Abstract(参考訳): 機械学習モデルの採用が増加するにつれて、敵対的攻撃に対する堅牢なモデルの確保がますます重要になっている。
教師なしの機械学習がより注目を集める中、攻撃に対して堅牢であることを保証することは不可欠である。
本稿では,教師なし学習の堅牢性に関する体系的文献レビューを行い,86論文を収集した。
以上の結果から,ほとんどの研究は効果的な防御を行うプライバシ攻撃に重点を置いているが,有効な防御手段や一般的な防御手段が欠如している。
この結果に基づき、教師なし学習に対する攻撃の性質に関するモデルを定式化し、使用モデルを提供することで将来の研究に寄与する。
関連論文リスト
- Sustainable Self-evolution Adversarial Training [51.25767996364584]
対戦型防衛モデルのための持続的自己進化支援訓練(SSEAT)フレームワークを提案する。
本研究は,様々な種類の対角的事例から学習を実現するために,連続的な対向防衛パイプラインを導入する。
また,より多様で重要な再学習データを選択するために,逆データ再生モジュールを提案する。
論文 参考訳(メタデータ) (2024-12-03T08:41:11Z) - The Space of Adversarial Strategies [6.295859509997257]
機械学習モデルにおける最悪のケース動作を誘発するインプットである逆例は、過去10年間に広く研究されてきた。
最悪の場合(すなわち最適な)敵を特徴づける体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-09-09T20:53:11Z) - Membership-Doctor: Comprehensive Assessment of Membership Inference
Against Machine Learning Models [11.842337448801066]
本稿では,様々なメンバーシップ推論攻撃と防衛の大規模測定を行う。
脅威モデル(例えば、同一構造や、シャドーモデルとターゲットモデルとの同一分布)のいくつかの仮定は不要である。
また、実験室のデータセットではなく、インターネットから収集された実世界のデータに対する攻撃を最初に実施しました。
論文 参考訳(メタデータ) (2022-08-22T17:00:53Z) - "Why do so?" -- A Practical Perspective on Machine Learning Security [21.538956161215555]
我々は139人の産業従事者との攻撃発生と懸念を分析した。
私たちの結果は、デプロイされた機械学習に対する現実世界の攻撃に光を当てています。
我々の研究は、現実の敵対的機械学習に関するさらなる研究の道を開くものだ。
論文 参考訳(メタデータ) (2022-07-11T19:58:56Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z) - Improving Robustness to Model Inversion Attacks via Mutual Information
Regularization [12.079281416410227]
本稿では,モデル逆転攻撃に対する防御機構について検討する。
MIは、ターゲット機械学習モデルへのアクセスからトレーニングデータ配布に関する情報を推測することを目的とした、プライバシ攻撃の一種である。
我々はMI攻撃に対するMID(Multual Information Regularization based Defense)を提案する。
論文 参考訳(メタデータ) (2020-09-11T06:02:44Z) - Adversarial Robustness for Machine Learning Cyber Defenses Using Log
Data [0.0]
我々は,機械学習サイバーディフェンスの対角的堅牢性を評価するためのテストフレームワークを開発した。
我々は、公開データセットを用いて、我々のフレームワークを検証し、我々の敵攻撃がターゲットシステムに対して成功することを示す。
我々は,異なるレベルのドロップアウト正規化の影響を分析し,より高いドロップアウトレベルがロバスト性を高めることを確かめるために,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-29T17:51:29Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
本研究では,自己指導型高水準表現の堅牢性について,敵攻撃に対する防御に利用して検討する。
ASVspoof 2019データセットの実験結果は、Mockingjayによって抽出されたハイレベルな表現が、敵の例の転送可能性を妨げることを示した。
論文 参考訳(メタデータ) (2020-06-05T03:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。