GPT4Image: Large Pre-trained Models Help Vision Models Learn Better on Perception Task
- URL: http://arxiv.org/abs/2306.00693v3
- Date: Thu, 27 Feb 2025 12:49:05 GMT
- Title: GPT4Image: Large Pre-trained Models Help Vision Models Learn Better on Perception Task
- Authors: Ning Ding, Yehui Tang, Zhongqian Fu, Chao Xu, Kai Han, Yunhe Wang,
- Abstract summary: We present a new learning framework, dubbed GPT4Image, where the knowledge of the large pre-trained models are extracted to help CNNs and ViTs learn better representations.<n>We conduct extensive experiments to verify the effectiveness of the proposed algorithm on various visual perception tasks.
- Score: 47.1857510710807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The upsurge in pre-trained large models started by ChatGPT has swept across the entire deep learning community. Such powerful models demonstrate advanced generative ability and multimodal understanding capability, which quickly set new state of the arts on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks like article analysis and image comprehension. However, due to the prohibitively high memory and computational cost of implementing such a large model, the conventional models (such as CNN and ViT) are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models on perception tasks (e.g. image classification) by taking advantage of the off-the-shelf large pre-trained models. We present a new learning framework, dubbed GPT4Image, where the knowledge of the large pre-trained models are extracted to help CNNs and ViTs learn better representations and achieve higher performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptions for training images. Then, these detailed descriptions are fed into a pre-trained encoder to extract text embeddings that encodes the rich semantics of images. During training, text embeddings will serve as extra supervising signal and be aligned with image representations learned by vision models. The alignment process helps vision models achieve better performance with the aid of pre-trained LLMs. We conduct extensive experiments to verify the effectiveness of the proposed algorithm on various visual perception tasks for heterogeneous model architectures.
Related papers
- From Prototypes to General Distributions: An Efficient Curriculum for Masked Image Modeling [11.634154932876719]
Masked Image Modeling has emerged as a powerful self-supervised learning paradigm for visual representation learning.
We propose a prototype-driven curriculum leagrning framework that structures the learning process to progress from prototypical examples to more complex variations in the dataset.
Our findings suggest that carefully controlling the order of training examples plays a crucial role in self-supervised visual learning.
arXiv Detail & Related papers (2024-11-16T03:21:06Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - HRVDA: High-Resolution Visual Document Assistant [32.51417315241559]
We propose a High-Resolution Visual Document Assistant (HRVDA) to bridge the gap between MLLMs and visual document understanding.
HRVDA employs a content filtering mechanism and an instruction filtering module to filter out the content-agnostic visual tokens and instruction-agnostic visual tokens.
Our model achieves state-of-the-art performance across multiple document understanding datasets.
arXiv Detail & Related papers (2024-04-10T11:10:50Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data.
We define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources.
arXiv Detail & Related papers (2023-12-01T18:59:57Z) - iBoot: Image-bootstrapped Self-Supervised Video Representation Learning [45.845595749486215]
Video self-supervised learning (SSL) suffers from added challenges: video datasets are typically not as large as image datasets.
We propose to utilize a strong image-based model, pre-trained with self- or language supervision, in a video representation learning framework.
The proposed algorithm is shown to learn much more efficiently in less epochs and with a smaller batch.
arXiv Detail & Related papers (2022-06-16T17:42:48Z) - Reinforcement Learning with Action-Free Pre-Training from Videos [95.25074614579646]
We introduce a framework that learns representations useful for understanding the dynamics via generative pre-training on videos.
Our framework significantly improves both final performances and sample-efficiency of vision-based reinforcement learning.
arXiv Detail & Related papers (2022-03-25T19:44:09Z) - Pre-Trained Image Processing Transformer [95.93031793337613]
We develop a new pre-trained model, namely, image processing transformer (IPT)
We present to utilize the well-known ImageNet benchmark for generating a large amount of corrupted image pairs.
IPT model is trained on these images with multi-heads and multi-tails.
arXiv Detail & Related papers (2020-12-01T09:42:46Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
Recent Transformer-based large-scale pre-trained models have revolutionized vision-and-language (V+L) research.
We present VALUE, a set of meticulously designed probing tasks to decipher the inner workings of multimodal pre-training.
Key observations: Pre-trained models exhibit a propensity for attending over text rather than images during inference.
arXiv Detail & Related papers (2020-05-15T01:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.