An End-to-End Time Series Model for Simultaneous Imputation and Forecast
- URL: http://arxiv.org/abs/2306.00778v1
- Date: Thu, 1 Jun 2023 15:08:22 GMT
- Title: An End-to-End Time Series Model for Simultaneous Imputation and Forecast
- Authors: Trang H. Tran, Lam M. Nguyen, Kyongmin Yeo, Nam Nguyen, Dzung Phan,
Roman Vaculin, Jayant Kalagnanam
- Abstract summary: We develop an end-to-end time series model that aims to learn the inference relation and make a multiple-step ahead forecast.
Our framework trains jointly two neural networks, one to learn the feature-wise correlations and the other for the modeling of temporal behaviors.
- Score: 14.756607742477252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting using historical data has been an interesting and
challenging topic, especially when the data is corrupted by missing values. In
many industrial problem, it is important to learn the inference function
between the auxiliary observations and target variables as it provides
additional knowledge when the data is not fully observed. We develop an
end-to-end time series model that aims to learn the such inference relation and
make a multiple-step ahead forecast. Our framework trains jointly two neural
networks, one to learn the feature-wise correlations and the other for the
modeling of temporal behaviors. Our model is capable of simultaneously imputing
the missing entries and making a multiple-step ahead prediction. The
experiments show good overall performance of our framework over existing
methods in both imputation and forecasting tasks.
Related papers
- Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Time-series Imputation and Prediction with Bi-Directional Generative
Adversarial Networks [0.3162999570707049]
We present a model for the combined task of imputing and predicting values for irregularly observed and varying length time-series data with missing entries.
Our model learns how to impute missing elements in-between (imputation) or outside of the input time steps (prediction), hence working as an effective any-time prediction tool for time-series data.
arXiv Detail & Related papers (2020-09-18T15:47:51Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
This work presents a novel neural network architecture for time-series forecasting.
We named our method Recurrent Graph Evolution Neural Network (ReGENN)
An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones.
arXiv Detail & Related papers (2020-08-28T20:10:07Z) - Spatiotemporal Attention for Multivariate Time Series Prediction and
Interpretation [17.568599402858037]
temporal attention mechanism (STAM) for simultaneous learning of the most important time steps and variables.
Results: STAM maintains state-of-the-art prediction accuracy while offering the benefit of accurate interpretability.
arXiv Detail & Related papers (2020-08-11T17:34:55Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.