Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective
- URL: http://arxiv.org/abs/2306.00795v2
- Date: Mon, 10 Jun 2024 12:01:46 GMT
- Title: Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective
- Authors: Allan Tosta, Antônio C. Lourenço, Daniel Brod, Fernando Iemini, Tiago Debarba,
- Abstract summary: We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computational models can be approached via the lens of resources needed to perform computational tasks, where a computational advantage is achieved by consuming specific forms of quantum resources, or, conversely, resource-free computations are classically simulable. Can we similarly identify quantum computational resources in the setting of more general quasi-particle statistics? In this work, we develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon. As we evince, the usual notion of partial trace fails in this scenario, so we build the notion of separability through a fractional Jordan-Wigner transformation, leading to an entanglement description of fermionic-anyon states. We apply this notion of fermionic-anyon separability, and the unitary operations that preserve it, mapping it to the free resources of matchgate circuits. We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
Related papers
- Efficient Representation of Gaussian Fermionic Pure States in Non-Computational Bases [0.0]
This paper introduces an innovative approach for representing Gaussian fermionic states, pivotal in quantum spin systems and fermionic models.
We focus on transitioning these states from the conventional computational (sigmaz) basis to more complex bases, such as (phi, fracpi2, alpha)
We present a novel algorithm that not only simplifies the basis transformation but also reduces computational complexity.
arXiv Detail & Related papers (2024-03-05T19:43:33Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Fermionic quantum processing with programmable neutral atom arrays [0.539215791790606]
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.
We present a fermionic quantum processor, where fermionic models are encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates.
arXiv Detail & Related papers (2023-03-13T10:35:48Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum Operations in an Information Theory for Fermions [0.0]
We introduce the physically allowed quantum operations, in congruence with the parity super-selection rule, that map the set of allowed fermionic states onto itself.
We explicitly show the equivalence between these three representations of fermionic quantum operations.
arXiv Detail & Related papers (2021-02-17T23:41:05Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Sign Problems in Quantum Field Theory: Classical and Quantum Approaches [0.0]
lattice field computation theory provides non-perturbative access to equilibrium physics of quantum fields.
When applied to certain fermionic systems, or to the calculation of out-of-equilibrium physics, Monte Carlo calculations encounter the so-called sign problem.
This thesis details two methods for mitigating or avoiding the sign problem.
arXiv Detail & Related papers (2020-06-05T20:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.