Fermionic quantum processing with programmable neutral atom arrays
- URL: http://arxiv.org/abs/2303.06985v1
- Date: Mon, 13 Mar 2023 10:35:48 GMT
- Title: Fermionic quantum processing with programmable neutral atom arrays
- Authors: Daniel Gonz\'alez-Cuadra, Dolev Bluvstein, Marcin Kalinowski, Raphael
Kaubruegger, Nishad Maskara, Piero Naldesi, Torsten V. Zache, Adam M.
Kaufman, Mikhail D. Lukin, Hannes Pichler, Beno\^it Vermersch, Jun Ye, Peter
Zoller
- Abstract summary: Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.
We present a fermionic quantum processor, where fermionic models are encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates.
- Score: 0.539215791790606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating the properties of many-body fermionic systems is an outstanding
computational challenge relevant to material science, quantum chemistry, and
particle physics. Although qubit-based quantum computers can potentially tackle
this problem more efficiently than classical devices, encoding non-local
fermionic statistics introduces an overhead in the required resources, limiting
their applicability on near-term architectures. In this work, we present a
fermionic quantum processor, where fermionic models are locally encoded in a
fermionic register and simulated in a hardware-efficient manner using fermionic
gates. We consider in particular fermionic atoms in programmable tweezer arrays
and develop different protocols to implement non-local tunneling gates,
guaranteeing Fermi statistics at the hardware level. We use this gate set,
together with Rydberg-mediated interaction gates, to find efficient circuit
decompositions for digital and variational quantum simulation algorithms,
illustrated here for molecular energy estimation. Finally, we consider a
combined fermion-qubit architecture, where both the motional and internal
degrees of freedom of the atoms are harnessed to efficiently implement quantum
phase estimation, as well as to simulate lattice gauge theory dynamics.
Related papers
- Fermion-qubit fault-tolerant quantum computing [39.58317527488534]
We introduce fermion-qubit fault-tolerant quantum computing, a framework which removes this overhead altogether.
We show how our framework can be implemented in neutral atoms, overcoming the apparent inability of neutral atoms to implement non-number-conserving gates.
Our framework opens the door to fermion-qubit fault-tolerant quantum computation in platforms with native fermions.
arXiv Detail & Related papers (2024-11-13T19:00:02Z) - A recipe for local simulation of strongly-correlated fermionic matter on quantum computers: the 2D Fermi-Hubbard model [0.0]
We provide a step-by-step recipe for simulating the paradigmatic two-dimensional Fermi-Hubbard model on a quantum computer using only local operations.
We provide a detailed recipe for an end-to-end simulation including embedding on a physical device.
arXiv Detail & Related papers (2024-08-26T18:00:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Computation and Simulation using Fermion-Pair Registers [0.0]
We propose and analyze an approach to realize quantum computation and simulation using fermionic particles under quantum gas microscopes.
We describe how to engineer the SWAP gate and high-fidelity controlled-phase gates.
We show that 2D quantum Ising Hamiltonians with transverse and longitudinal fields can be efficient simulated by modulating Feshbach interaction strengths.
arXiv Detail & Related papers (2023-06-06T17:59:08Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - An application benchmark for fermionic quantum simulations [0.0]
It is expected that the simulation of correlated fermions in chemistry and material science will be one of the first practical applications of quantum processors.
We propose using the one-dimensional Fermi-Hubbard model as an application benchmark for variational quantum simulations on near-term quantum devices.
arXiv Detail & Related papers (2020-03-04T02:23:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.