AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation
- URL: http://arxiv.org/abs/2306.00977v4
- Date: Wed, 10 Apr 2024 10:56:00 GMT
- Title: AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation
- Authors: Yuanwen Yue, Sabarinath Mahadevan, Jonas Schult, Francis Engelmann, Bastian Leibe, Konrad Schindler, Theodora Kontogianni,
- Abstract summary: We introduce AGILE3D, an efficient, attention-based model that supports simultaneous segmentation of multiple 3D objects.
Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries and the 3D scene.
In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art.
- Score: 32.63772366307106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During interactive segmentation, a model and a user work together to delineate objects of interest in a 3D point cloud. In an iterative process, the model assigns each data point to an object (or the background), while the user corrects errors in the resulting segmentation and feeds them back into the model. The current best practice formulates the problem as binary classification and segments objects one at a time. The model expects the user to provide positive clicks to indicate regions wrongly assigned to the background and negative clicks on regions wrongly assigned to the object. Sequentially visiting objects is wasteful since it disregards synergies between objects: a positive click for a given object can, by definition, serve as a negative click for nearby objects. Moreover, a direct competition between adjacent objects can speed up the identification of their common boundary. We introduce AGILE3D, an efficient, attention-based model that (1) supports simultaneous segmentation of multiple 3D objects, (2) yields more accurate segmentation masks with fewer user clicks, and (3) offers faster inference. Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries as well as between them and the 3D scene through a click attention module. Every time new clicks are added, we only need to run a lightweight decoder that produces updated segmentation masks. In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art. Moreover, we also verify its practicality in real-world setups with real user studies.
Related papers
- PickScan: Object discovery and reconstruction from handheld interactions [99.99566882133179]
We develop an interaction-guided and class-agnostic method to reconstruct 3D representations of scenes.
Our main contribution is a novel approach to detecting user-object interactions and extracting the masks of manipulated objects.
Compared to Co-Fusion, the only comparable interaction-based and class-agnostic baseline, this corresponds to a reduction in chamfer distance of 73%.
arXiv Detail & Related papers (2024-11-17T23:09:08Z) - iDet3D: Towards Efficient Interactive Object Detection for LiDAR Point
Clouds [39.261055567560724]
We propose iDet3D, an efficient interactive 3D object detector.
iDet3D supports a user-friendly 2D interface, which can ease the cognitive burden of exploring 3D space.
We show that our method can construct precise annotations in a few clicks.
arXiv Detail & Related papers (2023-12-24T09:59:46Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - 3DRP-Net: 3D Relative Position-aware Network for 3D Visual Grounding [58.924180772480504]
3D visual grounding aims to localize the target object in a 3D point cloud by a free-form language description.
We propose a relation-aware one-stage framework, named 3D Relative Position-aware Network (3-Net)
arXiv Detail & Related papers (2023-07-25T09:33:25Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - Interactive Object Segmentation in 3D Point Clouds [27.88495480980352]
We present an interactive 3D object segmentation method in which the user interacts directly with the 3D point cloud.
Our model does not require training data from the target domain.
It performs well on several other datasets with different data characteristics as well as different object classes.
arXiv Detail & Related papers (2022-04-14T18:31:59Z) - Localized Interactive Instance Segmentation [24.55415554455844]
We propose a clicking scheme wherein user interactions are restricted to the proximity of the object.
We demonstrate the effectiveness of our proposed clicking scheme and localization strategy through detailed experimentation.
arXiv Detail & Related papers (2020-10-18T23:24:09Z) - DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping [72.84991726271024]
We describe an unsupervised method to detect and segment portions of images of live scenes that are seen moving as a coherent whole.
Our method first partitions the motion field by minimizing the mutual information between segments.
It uses the segments to learn object models that can be used for detection in a static image.
arXiv Detail & Related papers (2020-08-16T22:05:13Z) - A Deep Learning Approach to Object Affordance Segmentation [31.221897360610114]
We design an autoencoder that infers pixel-wise affordance labels in both videos and static images.
Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism.
We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF.
arXiv Detail & Related papers (2020-04-18T15:34:41Z) - SDOD:Real-time Segmenting and Detecting 3D Object by Depth [5.97602869680438]
This paper proposes a real-time framework that segmenting and detecting 3D objects by depth.
We discretize the objects' depth into depth categories and transform the instance segmentation task into a pixel-level classification task.
Experiments on the challenging KITTI dataset show that our approach outperforms LklNet about 1.8 times on the speed of segmentation and 3D detection.
arXiv Detail & Related papers (2020-01-26T09:06:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.