論文の概要: Adaptive ship-radiated noise recognition with learnable fine-grained
wavelet transform
- arxiv url: http://arxiv.org/abs/2306.01002v1
- Date: Wed, 31 May 2023 06:56:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 18:52:22.027057
- Title: Adaptive ship-radiated noise recognition with learnable fine-grained
wavelet transform
- Title(参考訳): 学習可能な細粒ウェーブレット変換による船舶適応雑音認識
- Authors: Yuan Xie, Jiawei Ren, Ji Xu
- Abstract要約: 本稿では,適応型一般化認識システム AGNet を提案する。
固定ウェーブレットパラメータをきめ細かな学習可能なパラメータに変換することにより、AGNetは異なる周波数で水中音の特性を学習する。
実験の結果、AGNetは水中音響データセットのベースライン法を全て上回っていることがわかった。
- 参考スコア(独自算出の注目度): 26.110124016534552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing the ocean acoustic environment is a tricky task. Background noise
and variable channel transmission environment make it complicated to implement
accurate ship-radiated noise recognition. Existing recognition systems are weak
in addressing the variable underwater environment, thus leading to
disappointing performance in practical application. In order to keep the
recognition system robust in various underwater environments, this work
proposes an adaptive generalized recognition system - AGNet (Adaptive
Generalized Network). By converting fixed wavelet parameters into fine-grained
learnable parameters, AGNet learns the characteristics of underwater sound at
different frequencies. Its flexible and fine-grained design is conducive to
capturing more background acoustic information (e.g., background noise,
underwater transmission channel). To utilize the implicit information in
wavelet spectrograms, AGNet adopts the convolutional neural network with
parallel convolution attention modules as the classifier. Experiments reveal
that our AGNet outperforms all baseline methods on several underwater acoustic
datasets, and AGNet could benefit more from transfer learning. Moreover, AGNet
shows robust performance against various interference factors.
- Abstract(参考訳): 海洋音環境の分析は難しい作業だ。
背景雑音と可変チャネル伝送環境は,正確な船舶騒音認識を実現するのを複雑にしている。
既存の認識システムは, 水中環境の変動に対処する上で弱いため, 実用上は性能が低下する。
本研究は,様々な水中環境における認識システムの堅牢性を維持するため,適応型一般化認識システムagnet(adaptive generalized network)を提案する。
固定ウェーブレットパラメータを細粒度学習可能なパラメータに変換することで、agnetは異なる周波数で水中音の特性を学習する。
フレキシブルできめ細かな設計は、よりバックグラウンドな音響情報(例えば、バックグラウンドノイズ、水中の伝送チャンネル)を捉えやすくする。
ウェーブレットスペクトログラムにおける暗黙の情報を利用するため、agnetは並列畳み込み注意モジュールを分類器として畳み込みニューラルネットワークを採用する。
実験の結果、AGNetは水中音響データセットのベースライン法を全て上回り、AGNetは転送学習の恩恵を受けることがわかった。
さらに、agnetは様々な干渉要因に対して堅牢な性能を示す。
関連論文リスト
- A Novel Score-CAM based Denoiser for Spectrographic Signature Extraction without Ground Truth [0.0]
本稿では,Score-CAMをベースとした新しいデノイザを開発し,ノイズスペクトルデータからオブジェクトのシグネチャを抽出する。
特に,本論文では,スペクトルトレーニングデータの学習と生成のための,新たな生成逆ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-28T21:40:46Z) - DenoDet: Attention as Deformable Multi-Subspace Feature Denoising for Target Detection in SAR Images [20.11145540094807]
本稿では、畳み込みバイアスを校正し、高周波により多くの注意を払うために、明示的な周波数領域変換によって支援されるネットワークを提案する。
変換領域ソフトしきい値処理を行う動的周波数領域アテンションモジュールであるTransDenoを設計する。
プラグアンドプレイのTransDenoは、複数のSARターゲット検出データセットに対して最先端のスコアを設定する。
論文 参考訳(メタデータ) (2024-06-05T01:05:26Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Timbre Transfer with Variational Auto Encoding and Cycle-Consistent
Adversarial Networks [0.6445605125467573]
本研究は,音源音の音色を目標音の音色に変換し,音質の低下を最小限に抑えた深層学習の音色伝達への適用について検討する。
この手法は、変分オートエンコーダとジェネレーティブ・アドバイサル・ネットワークを組み合わせて、音源の有意義な表現を構築し、ターゲット音声の現実的な世代を生成する。
論文 参考訳(メタデータ) (2021-09-05T15:06:53Z) - PILOT: Introducing Transformers for Probabilistic Sound Event
Localization [107.78964411642401]
本稿では,受信したマルチチャンネル音声信号の時間的依存性を自己アテンション機構によってキャプチャする,トランスフォーマーに基づく新しい音声イベント定位フレームワークを提案する。
このフレームワークは, 公開されている3つの音声イベントローカライズデータセットを用いて評価し, 局所化誤差と事象検出精度の点で最先端の手法と比較した。
論文 参考訳(メタデータ) (2021-06-07T18:29:19Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
本稿では,GANトレーニング中の不安定性問題に対応するため,ジェネレータネットワークに正規性から逸脱する条件付け手法を提案する。
我々は、生成元をシュア分解のスペクトル領域で計算された実サンプルの正規化関数から逸脱するように強制する。
論文 参考訳(メタデータ) (2020-10-12T16:50:22Z) - A Multi-view CNN-based Acoustic Classification System for Automatic
Animal Species Identification [42.119250432849505]
無線音響センサネットワーク(WASN)のためのディープラーニングに基づく音響分類フレームワークを提案する。
提案フレームワークは,無線センサノードの計算負担を緩和するクラウドアーキテクチャに基づいている。
認識精度を向上させるために,多視点畳み込みニューラルネットワーク(CNN)を設計し,短期・中期・長期の依存関係を並列に抽出する。
論文 参考訳(メタデータ) (2020-02-23T03:51:08Z) - Deep Speaker Embeddings for Far-Field Speaker Recognition on Short
Utterances [53.063441357826484]
深層話者埋め込みに基づく話者認識システムは,制御条件下での大幅な性能向上を実現している。
制御されていない雑音環境下での短い発話に対する話者検証は、最も困難で要求の高いタスクの1つである。
本稿では,a)環境騒音の有無による遠距離話者検証システムの品質向上,b)短時間発話におけるシステム品質劣化の低減という2つの目標を達成するためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-14T13:34:33Z) - Temporal-Spatial Neural Filter: Direction Informed End-to-End
Multi-channel Target Speech Separation [66.46123655365113]
ターゲット音声分離とは、混合信号からターゲット話者の音声を抽出することを指す。
主な課題は、複雑な音響環境とリアルタイム処理の要件である。
複数話者混合から対象音声波形を直接推定する時間空間ニューラルフィルタを提案する。
論文 参考訳(メタデータ) (2020-01-02T11:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。