EPIC: Graph Augmentation with Edit Path Interpolation via Learnable Cost
- URL: http://arxiv.org/abs/2306.01310v2
- Date: Tue, 4 Jun 2024 05:54:38 GMT
- Title: EPIC: Graph Augmentation with Edit Path Interpolation via Learnable Cost
- Authors: Jaeseung Heo, Seungbeom Lee, Sungsoo Ahn, Dongwoo Kim,
- Abstract summary: We propose EPIC (Edit Path Interpolation via learnable Cost), a novel-based method for augmenting graph datasets.
To interpolate between two graphs lying in an irregular domain, EPIC builds an edit path that represents the transformation process between two graphs via edit operations.
Our approach outperforms existing augmentation techniques in many tasks.
- Score: 12.191001329584502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation plays a critical role in improving model performance across various domains, but it becomes challenging with graph data due to their complex and irregular structure. To address this issue, we propose EPIC (Edit Path Interpolation via learnable Cost), a novel interpolation-based method for augmenting graph datasets. To interpolate between two graphs lying in an irregular domain, EPIC leverages the concept of graph edit distance, constructing an edit path that represents the transformation process between two graphs via edit operations. Moreover, our method introduces a context-sensitive cost model that accounts for the importance of specific edit operations formulated through a learning framework. This allows for a more nuanced transformation process, where the edit distance is not merely count-based but reflects meaningful graph attributes. With randomly sampled graphs from the edit path, we enrich the training set to enhance the generalization capability of classification models. Experimental evaluations across several benchmark datasets demonstrate that our approach outperforms existing augmentation techniques in many tasks.
Related papers
- AnyGraph: Graph Foundation Model in the Wild [16.313146933922752]
Graph foundation models offer the potential to learn robust, generalizable representations from graph data.
In this work, we investigate a unified graph model, AnyGraph, designed to handle key challenges.
Our experiments on diverse 38 graph datasets have demonstrated the strong zero-shot learning performance of AnyGraph.
arXiv Detail & Related papers (2024-08-20T09:57:13Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Graph Context Transformation Learning for Progressive Correspondence
Pruning [26.400567961735234]
We propose Graph Context Transformation Network (GCT-Net) enhancing context information to conduct consensus guidance for progressive correspondence pruning.
Specifically, we design the Graph Context Enhance Transformer which first generates the graph network and then transforms it into multi-branch graph contexts.
To further apply the recalibrated graph contexts to the global domain, we propose the Graph Context Guidance Transformer.
arXiv Detail & Related papers (2023-12-26T09:43:30Z) - Cross-View Graph Consistency Learning for Invariant Graph
Representations [16.007232280413806]
We propose a cross-view graph consistency learning (CGCL) method that learns invariant graph representations for link prediction.
This paper empirically and experimentally demonstrates the effectiveness of the proposed CGCL method.
arXiv Detail & Related papers (2023-11-20T14:58:47Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Scene Graph Modification as Incremental Structure Expanding [61.84291817776118]
We focus on scene graph modification (SGM), where the system is required to learn how to update an existing scene graph based on a natural language query.
We frame SGM as a graph expansion task by introducing the incremental structure expanding (ISE)
We construct a challenging dataset that contains more complicated queries and larger scene graphs than existing datasets.
arXiv Detail & Related papers (2022-09-15T16:26:14Z) - Iterative Scene Graph Generation [55.893695946885174]
Scene graph generation involves identifying object entities and their corresponding interaction predicates in a given image (or video)
Existing approaches to scene graph generation assume certain factorization of the joint distribution to make the estimation iteration feasible.
We propose a novel framework that addresses this limitation, as well as introduces dynamic conditioning on the image.
arXiv Detail & Related papers (2022-07-27T10:37:29Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
We propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT)
DGT has spatial-temporal encoding to effectively learn graph topology and capture implicit links.
We show that DGT presents superior performance compared with several state-of-the-art baselines.
arXiv Detail & Related papers (2021-11-19T21:44:23Z) - Combinatorial Learning of Graph Edit Distance via Dynamic Embedding [108.49014907941891]
This paper presents a hybrid approach by combing the interpretability of traditional search-based techniques for producing the edit path.
Inspired by dynamic programming, node-level embedding is designated in a dynamic reuse fashion and suboptimal branches are encouraged to be pruned.
Experimental results on different graph datasets show that our approach can remarkably ease the search process of A* without sacrificing much accuracy.
arXiv Detail & Related papers (2020-11-30T17:41:02Z) - Graph Edit Distance Reward: Learning to Edit Scene Graph [69.39048809061714]
We propose a new method to edit the scene graph according to the user instructions, which has never been explored.
To be specific, in order to learn editing scene graphs as the semantics given by texts, we propose a Graph Edit Distance Reward.
In the context of text-editing image retrieval, we validate the effectiveness of our method in CSS and CRIR dataset.
arXiv Detail & Related papers (2020-08-15T04:52:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.