論文の概要: Federated Domain Generalization: A Survey
- arxiv url: http://arxiv.org/abs/2306.01334v2
- Date: Fri, 1 Mar 2024 14:05:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-04 14:29:19.345334
- Title: Federated Domain Generalization: A Survey
- Title(参考訳): Federated Domain Generalization: 調査
- Authors: Ying Li, Xingwei Wang, Rongfei Zeng, Praveen Kumar Donta, Ilir
Murturi, Min Huang, and Schahram Dustdar
- Abstract要約: 機械学習では、データはさまざまなデバイス、組織、エッジノードに分散されることが多い。
この課題に応えて、連邦領域の一般化への関心が高まっている。
本稿では,この領域における最近の進歩に関する最初の調査について述べる。
- 参考スコア(独自算出の注目度): 12.84261944926547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning typically relies on the assumption that training and testing
distributions are identical and that data is centrally stored for training and
testing. However, in real-world scenarios, distributions may differ
significantly and data is often distributed across different devices,
organizations, or edge nodes. Consequently, it is imperative to develop models
that can effectively generalize to unseen distributions where data is
distributed across different domains. In response to this challenge, there has
been a surge of interest in federated domain generalization (FDG) in recent
years. FDG combines the strengths of federated learning (FL) and domain
generalization (DG) techniques to enable multiple source domains to
collaboratively learn a model capable of directly generalizing to unseen
domains while preserving data privacy. However, generalizing the federated
model under domain shifts is a technically challenging problem that has
received scant attention in the research area so far. This paper presents the
first survey of recent advances in this area. Initially, we discuss the
development process from traditional machine learning to domain adaptation and
domain generalization, leading to FDG as well as provide the corresponding
formal definition. Then, we categorize recent methodologies into four classes:
federated domain alignment, data manipulation, learning strategies, and
aggregation optimization, and present suitable algorithms in detail for each
category. Next, we introduce commonly used datasets, applications, evaluations,
and benchmarks. Finally, we conclude this survey by providing some potential
research topics for the future.
- Abstract(参考訳): 機械学習は通常、トレーニングとテストは同一であり、データはトレーニングとテストのために中央に保存されているという仮定に依存している。
しかし、現実のシナリオでは、分布は著しく異なり、データは異なるデバイス、組織、エッジノードに分散されることが多い。
したがって、データが異なるドメインに分散する非知覚分布に効果的に一般化できるモデルを開発することが不可欠である。
この課題に対応するため、近年、フェデレーションドメイン一般化(fdg)への関心が高まっている。
FDGは、フェデレートラーニング(FL)とドメイン一般化(DG)の長所を組み合わせることで、複数のソースドメインがデータプライバシを保持しながら、目に見えないドメインに直接一般化できるモデルを協調的に学習できるようにする。
しかし、ドメインシフトの下でのフェデレーションモデルを一般化することは技術的に難しい問題であり、これまで研究領域で注目されてきた。
本稿では,この領域における最近の進歩に関する最初の調査を行う。
まず、従来の機械学習からドメイン適応やドメイン一般化までの開発プロセスについて議論し、fdgやそれに対応する形式的定義も提供する。
次に,最近の手法を,フェデレートされたドメインアライメント,データ操作,学習戦略,集約最適化の4つのクラスに分類し,各カテゴリに適したアルゴリズムを提案する。
次に、一般的に使用されるデータセット、アプリケーション、評価、ベンチマークを紹介する。
最後に,今後の研究課題について述べることで,この調査を締めくくっている。
関連論文リスト
- A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
ソースフリードメイン適応(SFDA)の研究は近年注目を集めている。
SFDAの最近の進歩を包括的に調査し、それらを統一的な分類体系に整理する。
一般的な3つの分類基準で30以上のSFDA法を比較検討した。
論文 参考訳(メタデータ) (2023-02-23T06:32:09Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
本稿では,事前特定ドメインラベルと一般化性能の関連性について検討する。
マルチドメイン一般化のための一般的なアプローチであるMulDEnsを導入し,ERMをベースとした深層アンサンブルバックボーンを用いた。
我々は、MulDEnsがデータセット固有の拡張戦略やトレーニングプロセスの調整を必要としないことを示す。
論文 参考訳(メタデータ) (2021-12-17T23:21:50Z) - Reappraising Domain Generalization in Neural Networks [8.06370138649329]
機械学習アルゴリズムのドメイン一般化(DG)は、複数のトレーニング分布からドメインに依存しない仮説を学習する能力として定義される。
経験的リスク最小化(ERM)ベースラインは,既存のDG手法を一貫して上回っていることがわかった。
そこで我々は,各クラスに対してランダムにドメインを選択して,それをテスト用として保持する,クラスワイズDGの定式化を提案する。
論文 参考訳(メタデータ) (2021-10-15T10:06:40Z) - Towards Data-Free Domain Generalization [12.269045654957765]
異なるソースデータドメインでトレーニングされたモデルに含まれる知識は、どのようにして単一のモデルにマージされるのか?
以前のドメインの一般化手法は、典型的にはソースドメインデータの使用に依存しており、プライベートな分散データには適さない。
DeKANは、利用可能な教師モデルからドメイン固有の知識を抽出し、融合し、ドメインシフトに頑健な学生モデルに変換するアプローチである。
論文 参考訳(メタデータ) (2021-10-09T11:44:05Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Domain Generalization: A Survey [146.68420112164577]
ドメイン一般化(DG)は、モデル学習にソースドメインデータを使用するだけでOOD一般化を実現することを目的としています。
初めて、DGの10年の開発をまとめるために包括的な文献レビューが提供されます。
論文 参考訳(メタデータ) (2021-03-03T16:12:22Z) - Generalizing to Unseen Domains: A Survey on Domain Generalization [59.16754307820612]
ドメイン一般化は、1つまたは複数の異なるが関連するドメインが与えられる困難な設定を扱う。
目標は、目に見えないテストドメインに一般化できるモデルを学ぶことです。
本稿では,領域一般化の最近の進歩に対する最初のレビューを紹介する。
論文 参考訳(メタデータ) (2021-03-02T06:04:11Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
ドメインフリードメイン一般化(DFDG)は、目に見えないテストドメインでより良い一般化性能を実現するモデル非依存の方法である。
DFDGは新しい戦略を用いてドメイン不変なクラス差別的特徴を学習する。
時系列センサと画像分類公開データセットの両方で競合性能を得る。
論文 参考訳(メタデータ) (2021-02-17T17:46:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。