Federated Domain Generalization: A Survey
- URL: http://arxiv.org/abs/2306.01334v2
- Date: Fri, 1 Mar 2024 14:05:48 GMT
- Title: Federated Domain Generalization: A Survey
- Authors: Ying Li, Xingwei Wang, Rongfei Zeng, Praveen Kumar Donta, Ilir
Murturi, Min Huang, and Schahram Dustdar
- Abstract summary: In machine learning, data is often distributed across different devices, organizations, or edge nodes.
In response to this challenge, there has been a surge of interest in federated domain generalization.
This paper presents the first survey of recent advances in this area.
- Score: 12.84261944926547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning typically relies on the assumption that training and testing
distributions are identical and that data is centrally stored for training and
testing. However, in real-world scenarios, distributions may differ
significantly and data is often distributed across different devices,
organizations, or edge nodes. Consequently, it is imperative to develop models
that can effectively generalize to unseen distributions where data is
distributed across different domains. In response to this challenge, there has
been a surge of interest in federated domain generalization (FDG) in recent
years. FDG combines the strengths of federated learning (FL) and domain
generalization (DG) techniques to enable multiple source domains to
collaboratively learn a model capable of directly generalizing to unseen
domains while preserving data privacy. However, generalizing the federated
model under domain shifts is a technically challenging problem that has
received scant attention in the research area so far. This paper presents the
first survey of recent advances in this area. Initially, we discuss the
development process from traditional machine learning to domain adaptation and
domain generalization, leading to FDG as well as provide the corresponding
formal definition. Then, we categorize recent methodologies into four classes:
federated domain alignment, data manipulation, learning strategies, and
aggregation optimization, and present suitable algorithms in detail for each
category. Next, we introduce commonly used datasets, applications, evaluations,
and benchmarks. Finally, we conclude this survey by providing some potential
research topics for the future.
Related papers
- A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
The research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years.
We provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme.
We compare the results of more than 30 representative SFDA methods on three popular classification benchmarks.
arXiv Detail & Related papers (2023-02-23T06:32:09Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
We study the important link between pre-specified domain labels and the generalization performance.
We introduce a general approach for multi-domain generalization, MulDEns, that uses an ERM-based deep ensembling backbone.
We show that MulDEns does not require tailoring the augmentation strategy or the training process specific to a dataset.
arXiv Detail & Related papers (2021-12-17T23:21:50Z) - Reappraising Domain Generalization in Neural Networks [8.06370138649329]
Domain generalization (DG) of machine learning algorithms is defined as their ability to learn a domain agnostic hypothesis from multiple training distributions.
We find that a straightforward Empirical Risk Minimization (ERM) baseline consistently outperforms existing DG methods.
We propose a classwise-DG formulation, where for each class, we randomly select one of the domains and keep it aside for testing.
arXiv Detail & Related papers (2021-10-15T10:06:40Z) - Towards Data-Free Domain Generalization [12.269045654957765]
How can knowledge contained in models trained on different source data domains be merged into a single model that generalizes well to unseen target domains?
Prior domain generalization methods typically rely on using source domain data, making them unsuitable for private decentralized data.
We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift.
arXiv Detail & Related papers (2021-10-09T11:44:05Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
Unsupervised domain adaptation is used in many machine learning applications where, during training, a model has access to unlabeled data in the target domain.
We derive a novel generalization bound for domain adaptation that exploits a new measure of discrepancy between distributions based on a variational characterization of f-divergences.
arXiv Detail & Related papers (2021-06-21T18:21:09Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Domain Generalization: A Survey [146.68420112164577]
Domain generalization (DG) aims to achieve OOD generalization by only using source domain data for model learning.
For the first time, a comprehensive literature review is provided to summarize the ten-year development in DG.
arXiv Detail & Related papers (2021-03-03T16:12:22Z) - Generalizing to Unseen Domains: A Survey on Domain Generalization [59.16754307820612]
Domain generalization deals with a challenging setting where one or several different but related domain(s) are given.
The goal is to learn a model that can generalize to an unseen test domain.
This paper presents the first review for recent advances in domain generalization.
arXiv Detail & Related papers (2021-03-02T06:04:11Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.