Long-Range Feedback Spiking Network Captures Dynamic and Static Representations of the Visual Cortex under Movie Stimuli
- URL: http://arxiv.org/abs/2306.01354v2
- Date: Fri, 01 Nov 2024 09:34:47 GMT
- Title: Long-Range Feedback Spiking Network Captures Dynamic and Static Representations of the Visual Cortex under Movie Stimuli
- Authors: Liwei Huang, Zhengyu Ma, Liutao Yu, Huihui Zhou, Yonghong Tian,
- Abstract summary: There is limited insight into how the visual cortex represents natural movie stimuli that contain context-rich information.
This work proposes the long-range feedback spiking network (LoRaFB-SNet), which mimics top-down connections between cortical regions.
We present Time-Series Representational Similarity Analysis (TSRSA) to measure the similarity between model representations and visual cortical representations of mice.
- Score: 25.454851828755054
- License:
- Abstract: Deep neural networks (DNNs) are widely used models for investigating biological visual representations. However, existing DNNs are mostly designed to analyze neural responses to static images, relying on feedforward structures and lacking physiological neuronal mechanisms. There is limited insight into how the visual cortex represents natural movie stimuli that contain context-rich information. To address these problems, this work proposes the long-range feedback spiking network (LoRaFB-SNet), which mimics top-down connections between cortical regions and incorporates spike information processing mechanisms inherent to biological neurons. Taking into account the temporal dependence of representations under movie stimuli, we present Time-Series Representational Similarity Analysis (TSRSA) to measure the similarity between model representations and visual cortical representations of mice. LoRaFB-SNet exhibits the highest level of representational similarity, outperforming other well-known and leading alternatives across various experimental paradigms, especially when representing long movie stimuli. We further conduct experiments to quantify how temporal structures (dynamic information) and static textures (static information) of the movie stimuli influence representational similarity, suggesting that our model benefits from long-range feedback to encode context-dependent representations just like the brain. Altogether, LoRaFB-SNet is highly competent in capturing both dynamic and static representations of the mouse visual cortex and contributes to the understanding of movie processing mechanisms of the visual system. Our codes are available at https://github.com/Grasshlw/SNN-Neural-Similarity-Movie.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Time-Dependent VAE for Building Latent Representations from Visual Neural Activity with Complex Dynamics [25.454851828755054]
TiDeSPL-VAE can effectively analyze complex visual neural activity and model temporal relationships in a natural way.
Results show that our model not only yields the best decoding performance on naturalistic scenes/movies but also extracts explicit neural dynamics.
arXiv Detail & Related papers (2024-08-15T03:27:23Z) - Aligning Neuronal Coding of Dynamic Visual Scenes with Foundation Vision Models [2.790870674964473]
We propose Vi-ST, atemporal convolutional neural network fed with a self-supervised Vision Transformer (ViT)
Our proposed Vi-ST demonstrates a novel modeling framework for neuronal coding of dynamic visual scenes in the brain.
arXiv Detail & Related papers (2024-07-15T14:06:13Z) - The Dynamic Net Architecture: Learning Robust and Holistic Visual Representations Through Self-Organizing Networks [3.9848584845601014]
We present a novel intelligent-system architecture called "Dynamic Net Architecture" (DNA)
DNA relies on recurrence-stabilized networks and discuss it in application to vision.
arXiv Detail & Related papers (2024-07-08T06:22:10Z) - Brain-like representational straightening of natural movies in robust
feedforward neural networks [2.8749107965043286]
Representational straightening refers to a decrease in curvature of visual feature representations of a sequence of frames taken from natural movies.
We show robustness to noise in the input image can produce representational straightening in feedforward neural networks.
arXiv Detail & Related papers (2023-08-26T13:04:36Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
Deep convolutional neural networks (CNNs) have been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex.
Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex.
We show that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
arXiv Detail & Related papers (2022-05-27T08:06:40Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
We introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE.
Our approach combines a generative modeling framework with an instance-specific alignment loss.
We show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
arXiv Detail & Related papers (2021-11-03T16:39:43Z) - Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [70.76742458931935]
We introduce a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion.
Our representation is optimized through a neural network to fit the observed input views.
We show that our representation can be used for complex dynamic scenes, including thin structures, view-dependent effects, and natural degrees of motion.
arXiv Detail & Related papers (2020-11-26T01:23:44Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.