Mice to Machines: Neural Representations from Visual Cortex for Domain Generalization
- URL: http://arxiv.org/abs/2505.06886v1
- Date: Sun, 11 May 2025 07:37:37 GMT
- Title: Mice to Machines: Neural Representations from Visual Cortex for Domain Generalization
- Authors: Ahmed Qazi, Hamd Jalil, Asim Iqbal,
- Abstract summary: We investigate the functional alignment between the mouse visual cortex and deep learning models for object classification tasks.<n>Our work proposes a novel framework for comparing the functional architecture of the mouse visual cortex with deep learning models.<n>Our findings carry broad implications for the development of advanced AI models that draw inspiration from the mouse visual cortex.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The mouse is one of the most studied animal models in the field of systems neuroscience. Understanding the generalized patterns and decoding the neural representations that are evoked by the diverse range of natural scene stimuli in the mouse visual cortex is one of the key quests in computational vision. In recent years, significant parallels have been drawn between the primate visual cortex and hierarchical deep neural networks. However, their generalized efficacy in understanding mouse vision has been limited. In this study, we investigate the functional alignment between the mouse visual cortex and deep learning models for object classification tasks. We first introduce a generalized representational learning strategy that uncovers a striking resemblance between the functional mapping of the mouse visual cortex and high-performing deep learning models on both top-down (population-level) and bottom-up (single cell-level) scenarios. Next, this representational similarity across the two systems is further enhanced by the addition of Neural Response Normalization (NeuRN) layer, inspired by the activation profile of excitatory and inhibitory neurons in the visual cortex. To test the performance effect of NeuRN on real-world tasks, we integrate it into deep learning models and observe significant improvements in their robustness against data shifts in domain generalization tasks. Our work proposes a novel framework for comparing the functional architecture of the mouse visual cortex with deep learning models. Our findings carry broad implications for the development of advanced AI models that draw inspiration from the mouse visual cortex, suggesting that these models serve as valuable tools for studying the neural representations of the mouse visual cortex and, as a result, enhancing their performance on real-world tasks.
Related papers
- NeuRN: Neuro-inspired Domain Generalization for Image Classification [0.0]
We introduce a neuro-inspired Neural Response Normalization layer which draws inspiration from neurons in the mammalian visual cortex.<n>Our results demonstrate the effectiveness of NeuRN by showing improvement against baseline in cross-domain image classification tasks.
arXiv Detail & Related papers (2025-05-11T07:20:11Z) - V1T: large-scale mouse V1 response prediction using a Vision Transformer [1.5703073293718952]
We introduce V1T, a novel Vision Transformer based architecture that learns a shared visual and behavioral representation across animals.
We evaluate our model on two large datasets recorded from mouse primary visual cortex and outperform previous convolution-based models by more than 12.7% in prediction performance.
arXiv Detail & Related papers (2023-02-06T18:58:38Z) - The Sensorium competition on predicting large-scale mouse primary visual
cortex activity [28.272130531998936]
We propose the Sensorium benchmark competition to identify state-of-the-art models of the mouse visual system.
We collected a large-scale dataset from mouse primary visual cortex containing the responses of more than 28,000 neurons.
The benchmark challenge will rank models based on predictive performance for neuronal responses on a held-out test set.
arXiv Detail & Related papers (2022-06-17T10:09:57Z) - Top-down inference in an early visual cortex inspired hierarchical
Variational Autoencoder [0.0]
We exploit advances in Variational Autoencoders to investigate the early visual cortex with sparse coding hierarchical VAEs trained on natural images.
We show that representations similar to the one found in the primary and secondary visual cortices naturally emerge under mild inductive biases.
We show that a neuroscience-inspired choice of the recognition model is critical for two signatures of computations with generative models.
arXiv Detail & Related papers (2022-06-01T12:21:58Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
Deep convolutional neural networks (CNNs) have been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex.
Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex.
We show that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
arXiv Detail & Related papers (2022-05-27T08:06:40Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Deep Reinforcement Learning Models Predict Visual Responses in the
Brain: A Preliminary Result [1.0323063834827415]
We use reinforcement learning to train neural network models to play a 3D computer game.
We find that these reinforcement learning models achieve neural response prediction accuracy scores in the early visual areas.
In contrast, the supervised neural network models yield better neural response predictions in the higher visual areas.
arXiv Detail & Related papers (2021-06-18T13:10:06Z) - Fooling the primate brain with minimal, targeted image manipulation [67.78919304747498]
We propose an array of methods for creating minimal, targeted image perturbations that lead to changes in both neuronal activity and perception as reflected in behavior.
Our work shares the same goal with adversarial attack, namely the manipulation of images with minimal, targeted noise that leads ANN models to misclassify the images.
arXiv Detail & Related papers (2020-11-11T08:30:54Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
Social behaviour analysis of mice is an invaluable tool to assess therapeutic efficacy of neurodegenerative diseases.
Because of the potential to create rich descriptions of mouse social behaviors, the use of multi-view video recordings for rodent observations is increasingly receiving much attention.
We propose a novel multiview latent-attention and dynamic discriminative model that jointly learns view-specific and view-shared sub-structures.
arXiv Detail & Related papers (2020-11-04T18:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.