論文の概要: A Closer Look at the Adversarial Robustness of Deep Equilibrium Models
- arxiv url: http://arxiv.org/abs/2306.01429v1
- Date: Fri, 2 Jun 2023 10:40:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 15:47:08.152260
- Title: A Closer Look at the Adversarial Robustness of Deep Equilibrium Models
- Title(参考訳): 深部平衡モデルの逆ロバスト性について
- Authors: Zonghan Yang, Tianyu Pang, Yang Liu
- Abstract要約: 我々は、DECの中間勾配を推定し、攻撃パイプラインに統合するためのアプローチを開発する。
提案手法は,完全ホワイトボックス評価を促進するとともに,DECに対する効果的な敵防衛に繋がる。
- 参考スコア(独自算出の注目度): 25.787638780625514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep equilibrium models (DEQs) refrain from the traditional layer-stacking
paradigm and turn to find the fixed point of a single layer. DEQs have achieved
promising performance on different applications with featured memory
efficiency. At the same time, the adversarial vulnerability of DEQs raises
concerns. Several works propose to certify robustness for monotone DEQs.
However, limited efforts are devoted to studying empirical robustness for
general DEQs. To this end, we observe that an adversarially trained DEQ
requires more forward steps to arrive at the equilibrium state, or even
violates its fixed-point structure. Besides, the forward and backward tracks of
DEQs are misaligned due to the black-box solvers. These facts cause gradient
obfuscation when applying the ready-made attacks to evaluate or adversarially
train DEQs. Given this, we develop approaches to estimate the intermediate
gradients of DEQs and integrate them into the attacking pipelines. Our
approaches facilitate fully white-box evaluations and lead to effective
adversarial defense for DEQs. Extensive experiments on CIFAR-10 validate the
adversarial robustness of DEQs competitive with deep networks of similar sizes.
- Abstract(参考訳): 深層平衡モデル(deqs)は従来の層重ねパラダイムを避け、単一の層の不動点を見つける。
DEQは、メモリ効率を特徴とする様々なアプリケーションで有望なパフォーマンスを達成した。
同時に、deqsの敵対的脆弱性が懸念を呼んでいる。
いくつかの研究はモノトンDQの堅牢性を証明することを提案する。
しかしながら、一般的なDECに対する経験的堅牢性の研究に限定的な努力が費やされている。
この目的のために、敵に訓練されたDECは、平衡状態に到達するためにより多くの前進ステップを必要とするか、あるいはその固定点構造に違反する。
さらに、deqの前方および後方のトラックはブラックボックスソルバによってミスアライメントされる。
これらの事実は、DECを評価または敵対的に訓練するために準備された攻撃を適用する際に、勾配難読化を引き起こす。
これを踏まえて,deqの中間勾配を推定し,攻撃パイプラインに統合する手法を開発した。
我々のアプローチは、完全なホワイトボックス評価を促進し、deqの効果的な敵防御につながる。
CIFAR-10の広範囲な実験は、類似サイズのディープネットワークと競合するDECの対角的堅牢性を検証する。
関連論文リスト
- Adversarial Robustness Overestimation and Instability in TRADES [4.063518154926961]
TRADES は多クラス分類タスクにおける AutoAttack テストの精度と比較して,PGD の検証精度が極めて高い場合が多い。
この矛盾は、勾配マスキングに結びつく可能性のある、これらのインスタンスに対するロバストネスのかなりの過大評価を浮き彫りにする。
論文 参考訳(メタデータ) (2024-10-10T07:32:40Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
本研究では,クエリ制限シナリオにおいて,悪意のある逆の例を作成するために,空間変換ブラックボックス攻撃(STBA)を提案する。
そこで本研究では,STBAが対向例の認識不能性を効果的に改善し,クエリ制限条件下での攻撃成功率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-03-30T13:28:53Z) - Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization [18.95463890154886]
No-Reference Image Quality Assessment (NR-IQA)モデルは、メディア業界において重要な役割を果たす。
これらのモデルは、入力画像に知覚不能な摂動をもたらす敵攻撃に弱いことが判明した。
そこで本研究では,小さな摂動に攻撃された場合の予測スコアの安定性を向上させるための防衛手法を提案する。
論文 参考訳(メタデータ) (2024-03-18T01:11:53Z) - RECESS Vaccine for Federated Learning: Proactive Defense Against Model Poisoning Attacks [20.55681622921858]
モデル中毒は、フェデレートラーニング(FL)の適用を著しく阻害する
本研究では,モデル中毒に対するRECESSという新しいプロアクティブ・ディフェンスを提案する。
各イテレーションをスコアする従来の方法とは異なり、RECESSはクライアントのパフォーマンス相関を複数のイテレーションで考慮し、信頼スコアを見積もる。
論文 参考訳(メタデータ) (2023-10-09T06:09:01Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial
Robustness [75.30116479840619]
本稿では,不均衡勾配という,過度に推定された敵の強靭性も引き起こす,より微妙な状況を特定する。
不均衡勾配の現象は、マージン損失の一項の勾配が支配的となり、攻撃を準最適方向に押し上げるときに起こる。
本稿では、マージン分解攻撃(MD)について、個々の項にマージン損失を分解し、これらの項の攻撃可能性について個別に検討する。
論文 参考訳(メタデータ) (2020-06-24T13:41:37Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
本稿では,最適段差の大きさと目的関数の問題による障害を克服するPGD攻撃の2つの拡張を提案する。
そして、我々の新しい攻撃と2つの補完的な既存の攻撃を組み合わせることで、パラメータフリーで、計算に手頃な価格で、ユーザに依存しない攻撃のアンサンブルを形成し、敵の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-03-03T18:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。