Audio-Visual Speech Enhancement with Score-Based Generative Models
- URL: http://arxiv.org/abs/2306.01432v1
- Date: Fri, 2 Jun 2023 10:43:42 GMT
- Title: Audio-Visual Speech Enhancement with Score-Based Generative Models
- Authors: Julius Richter, Simone Frintrop, Timo Gerkmann
- Abstract summary: This paper introduces an audio-visual speech enhancement system that leverages score-based generative models.
We exploit audio-visual embeddings obtained from a self-super-vised learning model that has been fine-tuned on lipreading.
Experimental evaluations show that the proposed audio-visual speech enhancement system yields improved speech quality.
- Score: 22.559617939136505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an audio-visual speech enhancement system that
leverages score-based generative models, also known as diffusion models,
conditioned on visual information. In particular, we exploit audio-visual
embeddings obtained from a self-super\-vised learning model that has been
fine-tuned on lipreading. The layer-wise features of its transformer-based
encoder are aggregated, time-aligned, and incorporated into the noise
conditional score network. Experimental evaluations show that the proposed
audio-visual speech enhancement system yields improved speech quality and
reduces generative artifacts such as phonetic confusions with respect to the
audio-only equivalent. The latter is supported by the word error rate of a
downstream automatic speech recognition model, which decreases noticeably,
especially at low input signal-to-noise ratios.
Related papers
- Non-autoregressive real-time Accent Conversion model with voice cloning [0.0]
We have developed a non-autoregressive model for real-time accent conversion with voice cloning.
The model generates native-sounding L1 speech with minimal latency based on input L2 speech.
The model has the ability to save, clone and change the timbre, gender and accent of the speaker's voice in real time.
arXiv Detail & Related papers (2024-05-21T19:07:26Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
We present AdVerb, a novel audio-visual dereverberation framework.
It uses visual cues in addition to the reverberant sound to estimate clean audio.
arXiv Detail & Related papers (2023-08-23T18:20:59Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
Deep generative models can generate high-fidelity audio conditioned on various types of representations.
These models are prone to generate audible artifacts when the conditioning is flawed or imperfect.
We propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality from low-bitrate discrete representations.
arXiv Detail & Related papers (2023-08-02T22:14:29Z) - LA-VocE: Low-SNR Audio-visual Speech Enhancement using Neural Vocoders [53.30016986953206]
We propose LA-VocE, a new two-stage approach that predicts mel-spectrograms from noisy audio-visual speech via a transformer-based architecture.
We train and evaluate our framework on thousands of speakers and 11+ different languages, and study our model's ability to adapt to different levels of background noise and speech interference.
arXiv Detail & Related papers (2022-11-20T15:27:55Z) - Self-Supervised Learning for Speech Enhancement through Synthesis [5.924928860260821]
We propose a denoising vocoder (DeVo) approach, where a vocoder accepts noisy representations and learns to directly synthesize clean speech.
We demonstrate a causal version capable of running on streaming audio with 10ms latency and minimal performance degradation.
arXiv Detail & Related papers (2022-11-04T16:06:56Z) - Audio-visual speech enhancement with a deep Kalman filter generative
model [0.0]
We present an audiovisual deep Kalman filter (AV-DKF) generative model which assumes a first-order Markov chain model for the latent variables.
We develop an efficient inference methodology to estimate speech signals at test time.
arXiv Detail & Related papers (2022-11-02T09:50:08Z) - Lip-Listening: Mixing Senses to Understand Lips using Cross Modality
Knowledge Distillation for Word-Based Models [0.03499870393443267]
This work builds on recent state-of-the-art word-based lipreading models by integrating sequence-level and frame-level Knowledge Distillation (KD) to their systems.
We propose a technique to transfer speech recognition capabilities from audio speech recognition systems to visual speech recognizers, where our goal is to utilize audio data during lipreading model training.
arXiv Detail & Related papers (2022-06-05T15:47:54Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - End-to-end Audio-visual Speech Recognition with Conformers [65.30276363777514]
We present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer (Conformer)
In particular, the audio and visual encoders learn to extract features directly from raw pixels and audio waveforms.
We show that our proposed models raise the state-of-the-art performance by a large margin in audio-only, visual-only, and audio-visual experiments.
arXiv Detail & Related papers (2021-02-12T18:00:08Z) - Robust Speaker Recognition Using Speech Enhancement And Attention Model [37.33388614967888]
Instead of individually processing speech enhancement and speaker recognition, the two modules are integrated into one framework by a joint optimisation using deep neural networks.
To increase robustness against noise, a multi-stage attention mechanism is employed to highlight the speaker related features learned from context information in time and frequency domain.
The obtained results show that the proposed approach using speech enhancement and multi-stage attention models outperforms two strong baselines not using them in most acoustic conditions in our experiments.
arXiv Detail & Related papers (2020-01-14T20:03:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.