EmoUS: Simulating User Emotions in Task-Oriented Dialogues
- URL: http://arxiv.org/abs/2306.01579v1
- Date: Fri, 2 Jun 2023 14:48:19 GMT
- Title: EmoUS: Simulating User Emotions in Task-Oriented Dialogues
- Authors: Hsien-Chin Lin, Shutong Feng, Christian Geishauser, Nurul Lubis, Carel
van Niekerk, Michael Heck, Benjamin Ruppik, Renato Vukovic, Milica
Ga\v{s}i\'c
- Abstract summary: EmoUS is a user simulator that learns to simulate user emotions alongside user behaviour.
By analysing what kind of system behaviour elicits what kind of user emotions, we show that EmoUS can be used as a probe to evaluate a variety of dialogue systems.
- Score: 2.3555053092246125
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Existing user simulators (USs) for task-oriented dialogue systems only model
user behaviour on semantic and natural language levels without considering the
user persona and emotions. Optimising dialogue systems with generic user
policies, which cannot model diverse user behaviour driven by different
emotional states, may result in a high drop-off rate when deployed in the real
world. Thus, we present EmoUS, a user simulator that learns to simulate user
emotions alongside user behaviour. EmoUS generates user emotions, semantic
actions, and natural language responses based on the user goal, the dialogue
history, and the user persona. By analysing what kind of system behaviour
elicits what kind of user emotions, we show that EmoUS can be used as a probe
to evaluate a variety of dialogue systems and in particular their effect on the
user's emotional state. Developing such methods is important in the age of
large language model chat-bots and rising ethical concerns.
Related papers
- Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - Infusing Emotions into Task-oriented Dialogue Systems: Understanding, Management, and Generation [6.377334634656281]
Emotions are indispensable in human communication, but are often overlooked in task-oriented dialogue (ToD) modelling.
In this work, we incorporate emotion into the complete ToD processing loop, involving understanding, management, and generation.
We demonstrate that our proposed framework significantly enhances the user's emotional experience as well as the task success.
arXiv Detail & Related papers (2024-08-05T12:21:04Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
We propose a two-stage conversational agent for the generation of emotional dialogue.
First, a dialogue model trained without the emotion-annotated dialogue corpus generates a prototype response that meets the contextual semantics.
Secondly, the first-stage prototype is modified by a controllable emotion refiner with the empathy hypothesis.
arXiv Detail & Related papers (2023-01-12T10:03:56Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - Empathetic Response Generation with State Management [32.421924357260075]
The goal of empathetic response generation is to enhance the ability of dialogue systems to perceive and express emotions in conversations.
We propose a novel empathetic response generation model that can consider multiple state information including emotions and intents simultaneously.
Experimental results show that dynamically managing different information can help the model generate more empathetic responses.
arXiv Detail & Related papers (2022-05-07T16:17:28Z) - Towards Multi-Turn Empathetic Dialogs with Positive Emotion Elicitation [39.747587984500406]
This paper presents a novel task of empathetic dialog generation with positive emotion elicitation.
The agent conducts empathetic responses along with the target of eliciting the user's positive emotions in the multi-turn dialog.
We collect a large-scale emotional dialog dataset with positive emotion elicitation, called PosEmoDial.
arXiv Detail & Related papers (2022-04-22T05:32:08Z) - Chat-Capsule: A Hierarchical Capsule for Dialog-level Emotion Analysis [70.98130990040228]
We propose a Context-based Hierarchical Attention Capsule(Chat-Capsule) model, which models both utterance-level and dialog-level emotions and their interrelations.
On a dialog dataset collected from customer support of an e-commerce platform, our model is also able to predict user satisfaction and emotion curve category.
arXiv Detail & Related papers (2022-03-23T08:04:30Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
We propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction.
USDA incorporates the sequential transitions of both content and act features in the dialogue to predict the user satisfaction.
Experimental results on four benchmark goal-oriented dialogue datasets show that the proposed method substantially and consistently outperforms existing methods on USE.
arXiv Detail & Related papers (2022-02-07T02:50:07Z) - Automatically Select Emotion for Response via Personality-affected
Emotion Transition [0.0]
dialog systems should be capable to automatically select appropriate emotions for responses like humans.
Most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked.
We equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation.
arXiv Detail & Related papers (2021-06-30T07:00:42Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.