A Data-Driven Measure of Relative Uncertainty for Misclassification
Detection
- URL: http://arxiv.org/abs/2306.01710v2
- Date: Thu, 8 Feb 2024 13:26:57 GMT
- Title: A Data-Driven Measure of Relative Uncertainty for Misclassification
Detection
- Authors: Eduardo Dadalto, Marco Romanelli, Georg Pichler, and Pablo Piantanida
- Abstract summary: We introduce a data-driven measure of uncertainty relative to an observer for misclassification detection.
By learning patterns in the distribution of soft-predictions, our uncertainty measure can identify misclassified samples.
We demonstrate empirical improvements over multiple image classification tasks, outperforming state-of-the-art misclassification detection methods.
- Score: 25.947610541430013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Misclassification detection is an important problem in machine learning, as
it allows for the identification of instances where the model's predictions are
unreliable. However, conventional uncertainty measures such as Shannon entropy
do not provide an effective way to infer the real uncertainty associated with
the model's predictions. In this paper, we introduce a novel data-driven
measure of uncertainty relative to an observer for misclassification detection.
By learning patterns in the distribution of soft-predictions, our uncertainty
measure can identify misclassified samples based on the predicted class
probabilities. Interestingly, according to the proposed measure,
soft-predictions corresponding to misclassified instances can carry a large
amount of uncertainty, even though they may have low Shannon entropy. We
demonstrate empirical improvements over multiple image classification tasks,
outperforming state-of-the-art misclassification detection methods.
Related papers
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
Uncertainty estimations for machine learning interatomic potentials are crucial to quantify the additional model error they introduce.
We consider GPR models with Coulomb and SOAP representations as inputs to predict potential energy surfaces and excitation energies of molecules.
We evaluate, how the GPR variance and ensemble-based uncertainties relate to the error and whether model performance improves by selecting the most uncertain samples from a fixed configuration space.
arXiv Detail & Related papers (2024-10-27T10:06:09Z) - Probabilistic Contrastive Learning with Explicit Concentration on the Hypersphere [3.572499139455308]
This paper introduces a new perspective on incorporating uncertainty into contrastive learning by embedding representations within a spherical space.
We leverage the concentration parameter, kappa, as a direct, interpretable measure to quantify uncertainty explicitly.
arXiv Detail & Related papers (2024-05-26T07:08:13Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - What is Flagged in Uncertainty Quantification? Latent Density Models for
Uncertainty Categorization [68.15353480798244]
Uncertainty Quantification (UQ) is essential for creating trustworthy machine learning models.
Recent years have seen a steep rise in UQ methods that can flag suspicious examples.
We propose a framework for categorizing uncertain examples flagged by UQ methods in classification tasks.
arXiv Detail & Related papers (2022-07-11T19:47:00Z) - Data Uncertainty without Prediction Models [0.8223798883838329]
We propose an uncertainty estimation method named a Distance-weighted Class Impurity without explicit use of prediction models.
We verified that the Distance-weighted Class Impurity works effectively regardless of prediction models.
arXiv Detail & Related papers (2022-04-25T13:26:06Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
We show that uncertainty for learning from limited number of samples of high-dimensional input data and labels can be obtained by the approximate message passing algorithm.
We discuss how over-confidence can be mitigated by appropriately regularising, and show that cross-validating with respect to the loss leads to better calibration than with the 0/1 error.
arXiv Detail & Related papers (2022-02-07T15:32:07Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.