DEUP: Direct Epistemic Uncertainty Prediction
- URL: http://arxiv.org/abs/2102.08501v1
- Date: Tue, 16 Feb 2021 23:50:35 GMT
- Title: DEUP: Direct Epistemic Uncertainty Prediction
- Authors: Moksh Jain, Salem Lahlou, Hadi Nekoei, Victor Butoi, Paul Bertin,
Jarrid Rector-Brooks, Maksym Korablyov, Yoshua Bengio
- Abstract summary: Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
- Score: 56.087230230128185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epistemic uncertainty is the part of out-of-sample prediction error due to
the lack of knowledge of the learner. Whereas previous work was focusing on
model variance, we propose a principled approach for directly estimating
epistemic uncertainty by learning to predict generalization error and
subtracting an estimate of aleatoric uncertainty, i.e., intrinsic
unpredictability. This estimator of epistemic uncertainty includes the effect
of model bias and can be applied in non-stationary learning environments
arising in active learning or reinforcement learning. In addition to
demonstrating these properties of Direct Epistemic Uncertainty Prediction
(DEUP), we illustrate its advantage against existing methods for uncertainty
estimation on downstream tasks including sequential model optimization and
reinforcement learning. We also evaluate the quality of uncertainty estimates
from DEUP for probabilistic classification of images and for estimating
uncertainty about synergistic drug combinations.
Related papers
- On Information-Theoretic Measures of Predictive Uncertainty [5.8034373350518775]
Despite its significance, a consensus on the correct measurement of predictive uncertainty remains elusive.
Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution.
We empirically evaluate these measures in typical uncertainty estimation settings, such as misclassification detection, selective prediction, and out-of-distribution detection.
arXiv Detail & Related papers (2024-10-14T17:52:18Z) - Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals.
We propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest.
arXiv Detail & Related papers (2024-02-21T19:09:53Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution.
We introduce a theoretically grounded measure to overcome these limitations.
We find that our introduced measure behaves more reasonably in controlled synthetic tasks.
arXiv Detail & Related papers (2023-11-14T16:55:12Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Loss Estimators Improve Model Generalization [36.520569284970456]
We propose to train a loss estimator alongside the predictive model, using a contrastive training objective, to directly estimate the prediction uncertainties.
We show the impact of loss estimators on model generalization, in terms of both its fidelity on in-distribution data and its ability to detect out of distribution samples or new classes unseen during training.
arXiv Detail & Related papers (2021-03-05T16:35:10Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.