The ethical ambiguity of AI data enrichment: Measuring gaps in research
ethics norms and practices
- URL: http://arxiv.org/abs/2306.01800v1
- Date: Thu, 1 Jun 2023 16:12:55 GMT
- Title: The ethical ambiguity of AI data enrichment: Measuring gaps in research
ethics norms and practices
- Authors: Will Hawkins and Brent Mittelstadt
- Abstract summary: This study explores how, and to what extent, comparable research ethics requirements and norms have developed for AI research and data enrichment.
Leading AI venues have begun to establish protocols for human data collection, but these are are inconsistently followed by authors.
- Score: 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The technical progression of artificial intelligence (AI) research has been
built on breakthroughs in fields such as computer science, statistics, and
mathematics. However, in the past decade AI researchers have increasingly
looked to the social sciences, turning to human interactions to solve the
challenges of model development. Paying crowdsourcing workers to generate or
curate data, or data enrichment, has become indispensable for many areas of AI
research, from natural language processing to reinforcement learning from human
feedback (RLHF). Other fields that routinely interact with crowdsourcing
workers, such as Psychology, have developed common governance requirements and
norms to ensure research is undertaken ethically. This study explores how, and
to what extent, comparable research ethics requirements and norms have
developed for AI research and data enrichment. We focus on the approach taken
by two leading conferences: ICLR and NeurIPS, and journal publisher Springer.
In a longitudinal study of accepted papers, and via a comparison with
Psychology and CHI papers, this work finds that leading AI venues have begun to
establish protocols for human data collection, but these are are inconsistently
followed by authors. Whilst Psychology papers engaging with crowdsourcing
workers frequently disclose ethics reviews, payment data, demographic data and
other information, similar disclosures are far less common in leading AI venues
despite similar guidance. The work concludes with hypotheses to explain these
gaps in research ethics practices and considerations for its implications.
Related papers
- AI Research is not Magic, it has to be Reproducible and Responsible: Challenges in the AI field from the Perspective of its PhD Students [1.1922075410173798]
We surveyed 28 AI doctoral candidates from 13 European countries.
Challenges underscore the findability and quality of AI resources such as datasets, models, and experiments.
There is need for immediate adoption of responsible and reproducible AI research practices.
arXiv Detail & Related papers (2024-08-13T12:19:02Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
Large language models (LLMs) and generative AI tools present challenges in identifying and addressing biases.
generative AI tools are susceptible to goal misgeneralization, hallucinations, and adversarial attacks such as red teaming prompts.
We find that incorporating generative AI in the process of writing research manuscripts introduces a new type of context-induced algorithmic bias.
arXiv Detail & Related papers (2023-12-04T04:05:04Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI)
We explore the potential of AI-generated synthetic text as an alternative source of qualitative data.
We discuss the prospective development of new foundation models aimed at emulating human behavior in observational studies and user evaluations.
arXiv Detail & Related papers (2023-11-18T14:05:52Z) - Human participants in AI research: Ethics and transparency in practice [0.9608936085613567]
Research involving human participants has been critical to advances in artificial intelligence (AI) and machine learning (ML)
Yet AI and participatory researchers lack guidelines for ethical research with human participants in AI and ML.
This paper seeks to address these concerns and position technical researchers with practical knowledge for their work.
arXiv Detail & Related papers (2023-11-02T14:12:21Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - A narrowing of AI research? [0.0]
We study the evolution of the thematic diversity of AI research in academia and the private sector.
We measure the influence of private companies in AI research through the citations they receive and their collaborations with other institutions.
arXiv Detail & Related papers (2020-09-22T08:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.