SAPI: Surroundings-Aware Vehicle Trajectory Prediction at Intersections
- URL: http://arxiv.org/abs/2306.01812v2
- Date: Mon, 29 Jul 2024 04:53:18 GMT
- Title: SAPI: Surroundings-Aware Vehicle Trajectory Prediction at Intersections
- Authors: Ethan Zhang, Hao Xiao, Yiqian Gan, Lei Wang,
- Abstract summary: SAPI is a deep learning model to predict vehicle trajectories at intersections.
The proposed model consists of two convolutional network (CNN) and recurrent neural network (RNN)-based encoders and one decoder.
We evaluate SAPI on a proprietary dataset collected in real-world intersections through autonomous vehicles.
- Score: 4.982485708779067
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work we propose a deep learning model, i.e., SAPI, to predict vehicle trajectories at intersections. SAPI uses an abstract way to represent and encode surrounding environment by utilizing information from real-time map, right-of-way, and surrounding traffic. The proposed model consists of two convolutional network (CNN) and recurrent neural network (RNN)-based encoders and one decoder. A refiner is proposed to conduct a look-back operation inside the model, in order to make full use of raw history trajectory information. We evaluate SAPI on a proprietary dataset collected in real-world intersections through autonomous vehicles. It is demonstrated that SAPI shows promising performance when predicting vehicle trajectories at intersection, and outperforms benchmark methods. The average displacement error(ADE) and final displacement error(FDE) for 6-second prediction are 1.84m and 4.32m respectively. We also show that the proposed model can accurately predict vehicle trajectories in different scenarios.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - OFMPNet: Deep End-to-End Model for Occupancy and Flow Prediction in Urban Environment [0.0]
We introduce an end-to-end neural network methodology designed to predict the future behaviors of all dynamic objects in the environment.
We propose a novel time-weighted motion flow loss, whose application has shown a substantial decrease in end-point error.
arXiv Detail & Related papers (2024-04-02T19:37:58Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Navigating Uncertainty: The Role of Short-Term Trajectory Prediction in
Autonomous Vehicle Safety [3.3659635625913564]
We have developed a dataset for short-term trajectory prediction tasks using the CARLA simulator.
This dataset is extensive and incorporates what is considered complex scenarios - pedestrians crossing the road, vehicles overtaking.
An end-to-end short-term trajectory prediction model using convolutional neural networks (CNN) and long short-term memory (LSTM) networks has also been developed.
arXiv Detail & Related papers (2023-07-11T14:28:33Z) - Vehicle Trajectory Prediction on Highways Using Bird Eye View
Representations and Deep Learning [0.5420492913071214]
This work presents a novel method for predicting vehicle trajectories in highway scenarios using efficient bird's eye view representations and convolutional neural networks.
The U-net model has been selected as the prediction kernel to generate future visual representations of the scene using an image-to-image regression approach.
A method has been implemented to extract vehicle positions from the generated graphical representations to achieve subpixel resolution.
arXiv Detail & Related papers (2022-07-04T13:39:46Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDF is a continuous learning system for real-time signed distance field reconstruction.
It produces more accurate reconstructions and better approximations of collision costs and gradients.
arXiv Detail & Related papers (2022-04-05T15:48:39Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
In this paper, we propose the Road Network Metric Learning framework for Estimated Time of Arrival (ETA)
It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors.
We show that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.
arXiv Detail & Related papers (2020-06-24T04:45:14Z) - STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and
Trajectory Prediction [24.855059537779294]
We present a novel end-to-end two-stage network: Spatio--Interactive Network (STINet)
In addition to 3D geometry of pedestrians, we model temporal information for each of the pedestrians.
Our method predicts both current and past locations in the first stage, so that each pedestrian can be linked across frames.
arXiv Detail & Related papers (2020-05-08T18:43:01Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Many AI-oriented companies, such as Google, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms.
In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2020-03-22T03:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.