OFMPNet: Deep End-to-End Model for Occupancy and Flow Prediction in Urban Environment
- URL: http://arxiv.org/abs/2404.02263v1
- Date: Tue, 2 Apr 2024 19:37:58 GMT
- Title: OFMPNet: Deep End-to-End Model for Occupancy and Flow Prediction in Urban Environment
- Authors: Youshaa Murhij, Dmitry Yudin,
- Abstract summary: We introduce an end-to-end neural network methodology designed to predict the future behaviors of all dynamic objects in the environment.
We propose a novel time-weighted motion flow loss, whose application has shown a substantial decrease in end-point error.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of motion prediction is pivotal for autonomous driving systems, providing crucial data to choose a vehicle behavior strategy within its surroundings. Existing motion prediction techniques primarily focus on predicting the future trajectory of each agent in the scene individually, utilizing its past trajectory data. In this paper, we introduce an end-to-end neural network methodology designed to predict the future behaviors of all dynamic objects in the environment. This approach leverages the occupancy map and the scene's motion flow. We are investigatin various alternatives for constructing a deep encoder-decoder model called OFMPNet. This model uses a sequence of bird's-eye-view road images, occupancy grid, and prior motion flow as input data. The encoder of the model can incorporate transformer, attention-based, or convolutional units. The decoder considers the use of both convolutional modules and recurrent blocks. Additionally, we propose a novel time-weighted motion flow loss, whose application has shown a substantial decrease in end-point error. Our approach has achieved state-of-the-art results on the Waymo Occupancy and Flow Prediction benchmark, with a Soft IoU of 52.1% and an AUC of 76.75% on Flow-Grounded Occupancy.
Related papers
- AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
We present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ dataset challenge at CVPR 2024.
Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling.
Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth.
arXiv Detail & Related papers (2024-07-01T16:32:15Z) - Vectorized Representation Dreamer (VRD): Dreaming-Assisted Multi-Agent Motion-Forecasting [2.2020053359163305]
We introduce VRD, a vectorized world model-inspired approach to the multi-agent motion forecasting problem.
Our method combines a traditional open-loop training regime with a novel dreamed closed-loop training pipeline.
Our model achieves state-of-the-art performance on the single prediction miss rate metric.
arXiv Detail & Related papers (2024-06-20T15:34:17Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - An End-to-End Vehicle Trajcetory Prediction Framework [3.7311680121118345]
An accurate prediction of a future trajectory does not just rely on the previous trajectory, but also a simulation of the complex interactions between other vehicles nearby.
Most state-of-the-art networks built to tackle the problem assume readily available past trajectory points.
We propose a novel end-to-end architecture that takes raw video inputs and outputs future trajectory predictions.
arXiv Detail & Related papers (2023-04-19T15:42:03Z) - Exploring Attention GAN for Vehicle Motion Prediction [2.887073662645855]
We study the influence of attention in generative models for motion prediction, considering both physical and social context.
We validate our method using the Argoverse Motion Forecasting Benchmark 1.1, achieving competitive unimodal results.
arXiv Detail & Related papers (2022-09-26T13:18:32Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - AMENet: Attentive Maps Encoder Network for Trajectory Prediction [35.22312783822563]
Trajectory prediction is critical for applications of planning safe future movements.
We propose an end-to-end generative model named Attentive Maps Network (AMENet)
AMENet encodes the agent's motion and interaction information for accurate and realistic multi-path trajectory prediction.
arXiv Detail & Related papers (2020-06-15T10:00:07Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.