Conditional phase gate between two photons through control of the
interaction time with a single atom in a cavity
- URL: http://arxiv.org/abs/2306.01897v2
- Date: Wed, 6 Sep 2023 19:49:39 GMT
- Title: Conditional phase gate between two photons through control of the
interaction time with a single atom in a cavity
- Authors: Arkan Hassan and Julio Gea-Banacloche
- Abstract summary: We show that the simultaneous interaction of two single-photon fields with a single atom in the V configuration can produce a conditional phase gate of arbitrarily high fidelity.
We also study how spontaneous emission losses into non-cavity modes degrade the fidelity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the simultaneous interaction of two single-photon fields with a
single atom in the V configuration can in principle produce a conditional phase
gate of arbitrarily high fidelity, for an appropriate choice of the interaction
time, as long as the fields con be described by a single temporal mode (as in
an optical cavity); this requires a ``gated'' interaction, where, e.g.,
dynamical coupling techniques could be used to get the fields in and out of the
cavity, and a large detuning induced by a strong external field could be used
to turn the atom-field interaction on and off at the right times. With these
assumptions, our analysis shows that the largest gate fidelities are obtained
for a cavity containing a single atom, and that adding more atoms in effect
``dilutes'' the system's nonlinearity. We also study how spontaneous emission
losses into non-cavity modes degrade the fidelity, and consider as well a
couple of alternate atomic level schemes, namely two- and five-level systems.
Related papers
- Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Closed-System Solution of the 1D Atom from Collision Model [0.0]
We consider a two-level atom (qubit) coupled to the continuum of travelling modes of a field confined in a one-dimensional waveguide.
We solve its dynamics using a collision model where individual temporal modes of the field locally interact with the qubit in a sequential fashion.
This approach allows us to obtain the total wavefunction of the qubit-field system, at any time, when the field starts in a coherent or a single-photon state.
arXiv Detail & Related papers (2021-12-17T18:34:19Z) - Coherent Perfect Absorption in Tavis-Cummings Models [3.3726274202964635]
We study the conditions under which two laser fields can undergo Coherent Perfect Absorption (CPA)
We find that in the strong-coupling regime of cavity quantum electrodynamics, the strong DDI and the emitter-cavity detuning can act together to achieve the CPA.
Our CPA results are potentially applicable in building quantum memories that are an essential component in long-distance quantum networking.
arXiv Detail & Related papers (2021-08-12T18:39:13Z) - Extensible quantum simulation architecture based on atom-photon bound
states in an array of high-impedance resonators [0.0]
photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps.
Here we report on the concept and implementation of a novel microwave architecture consisting of an array of compact, high-impedance superconducting resonators.
We show coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates.
arXiv Detail & Related papers (2021-07-14T17:10:27Z) - Beyond the Rabi model: light interactions with polar atomic systems in a
cavity [0.0]
The Rabi Hamiltonian describes the interaction between a two-level atomic system and a single cavity mode of the electromagnetic field.
In this work we consider the most general Rabi model, incorporating the effects of permanent atomic electric dipole moments.
arXiv Detail & Related papers (2021-03-20T19:54:17Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Simultaneously exciting two atoms with photon-mediated Raman interaction [11.516411529232283]
We propose an approach to simultaneously excite two atoms by using cavity-assisted Raman process in combination with cavity photon-mediated interaction.
The dynamics and the quantum statistical properties of the process are investigated with experimentally feasible parameters.
arXiv Detail & Related papers (2020-04-23T15:10:03Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.