Extensible quantum simulation architecture based on atom-photon bound
states in an array of high-impedance resonators
- URL: http://arxiv.org/abs/2107.06852v1
- Date: Wed, 14 Jul 2021 17:10:27 GMT
- Title: Extensible quantum simulation architecture based on atom-photon bound
states in an array of high-impedance resonators
- Authors: Marco Scigliuzzo, Giuseppe Calaj\`o, Francesco Ciccarello, Daniel
Perez Lozano, Andreas Bengtsson, Pasquale Scarlino, Andreas Wallraff, Darrick
Chang, Per Delsing, Simone Gasparinetti
- Abstract summary: photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps.
Here we report on the concept and implementation of a novel microwave architecture consisting of an array of compact, high-impedance superconducting resonators.
We show coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Engineering the electromagnetic environment of a quantum emitter gives rise
to a plethora of exotic light-matter interactions. In particular, photonic
lattices can seed long-lived atom-photon bound states inside photonic band
gaps. Here we report on the concept and implementation of a novel microwave
architecture consisting of an array of compact, high-impedance superconducting
resonators forming a 1 GHz-wide pass band, in which we have embedded two
frequency-tuneable artificial atoms. We study the atom-field interaction and
access previously unexplored coupling regimes, in both the single- and
double-excitation subspace. In addition, we demonstrate coherent interactions
between two atom-photon bound states, in both resonant and dispersive regimes,
that are suitable for the implementation of SWAP and CZ two-qubit gates. The
presented architecture holds promise for quantum simulation with tuneable-range
interactions and photon transport experiments in nonlinear regime.
Related papers
- Tunable photon scattering by an atom dimer coupled to a band edge of a photonic crystal waveguide [0.0]
Quantum emitters trapped near photonic crystal waveguides have emerged as an exciting platform for realizing novel quantum matter-light interfaces.
We study tunable photon scattering in a photonic crystal waveguide coupled to an atom dimer with an arbitrary spatial separation.
arXiv Detail & Related papers (2024-09-30T13:57:58Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Few-Photon SUPER: Quantum emitter inversion via two off-resonant photon modes [0.0]
We investigate an extended Jaynes-Cummings model where two photon modes are coupled off-resonantly to a quantum emitter.
We identify few-photon scattering mechanisms that lead to a full inversion of the emitter while transferring off-resonant photons from one mode to another.
Our results can be understood as quantized analogue of the recently developed off-resonant quantum control scheme known as Swing-UP of quantum EmitteR.
arXiv Detail & Related papers (2024-05-30T14:32:18Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Observation of oscillatory Raman gain associated with two-photon Rabi
oscillations of nanofiber-coupled atoms [0.0]
Quantum emitters with a $Lambda$-type level structure enable numerous protocols and applications in quantum science and technology.
Here, we drive two-photon Rabi oscillations between the two ground states of cesium atoms.
We study the dependence of the two-photon Rabi frequency on the system parameters and observe Autler-Townes splitting in the probe transmission spectrum.
arXiv Detail & Related papers (2022-07-01T13:59:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.