論文の概要: Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations
- arxiv url: http://arxiv.org/abs/2306.01900v1
- Date: Fri, 2 Jun 2023 20:09:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-06-06 23:22:04.377765
- Title: Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations
- Title(参考訳): デノイザー表現を用いた非条件拡散モデルからの条件生成
- Authors: Alexandros Graikos, Srikar Yellapragada, Dimitris Samaras
- Abstract要約: 本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
- 参考スコア(独自算出の注目度): 94.04631421741986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Denoising diffusion models have gained popularity as a generative modeling
technique for producing high-quality and diverse images. Applying these models
to downstream tasks requires conditioning, which can take the form of text,
class labels, or other forms of guidance. However, providing conditioning
information to these models can be challenging, particularly when annotations
are scarce or imprecise. In this paper, we propose adapting pre-trained
unconditional diffusion models to new conditions using the learned internal
representations of the denoiser network. We demonstrate the effectiveness of
our approach on various conditional generation tasks, including
attribute-conditioned generation and mask-conditioned generation. Additionally,
we show that augmenting the Tiny ImageNet training set with synthetic images
generated by our approach improves the classification accuracy of ResNet
baselines by up to 8%. Our approach provides a powerful and flexible way to
adapt diffusion models to new conditions and generate high-quality augmented
data for various conditional generation tasks.
- Abstract(参考訳): 拡散モデルは高品質で多様な画像を生成するための生成的モデリング技術として人気を集めている。
これらのモデルを下流タスクに適用するには、テキスト、クラスラベル、あるいは他の形式のガイダンスの形をとることができる条件付けが必要である。
しかし、特にアノテーションが不足したり不正確であったりする場合、これらのモデルに条件付き情報を提供することは困難である。
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適応させることを提案する。
本稿では,属性条件付き生成やマスク条件付き生成などの条件付きタスクに対するアプローチの有効性を示す。
さらに,提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示した。
提案手法は,拡散モデルを新しい条件に適応させ,各種条件生成タスクのための高品質な拡張データを生成する,強力で柔軟な手法を提供する。
関連論文リスト
- Boosting Generative Image Modeling via Joint Image-Feature Synthesis [10.32324138962724]
低レベル画像潜在者を共同でモデル化するために拡散モデルを活用することで、ギャップをシームレスに橋渡しする新しい生成画像モデリングフレームワークを提案する。
我々の潜在セマンティック拡散アプローチは、純雑音からコヒーレントな画像-特徴対を生成することを学ぶ。
複雑な蒸留目的の必要をなくすことで、我々の統一設計は訓練を単純化し、強力な新しい推論戦略である表現誘導を解き放つ。
論文 参考訳(メタデータ) (2025-04-22T17:41:42Z) - Random Conditioning with Distillation for Data-Efficient Diffusion Model Compression [7.859083902013309]
拡散モデルは、プログレッシブデノケーションにより高品質な画像を生成するが、大きなモデルサイズと繰り返しサンプリングのために計算集約的である。
本研究では,ランダムに選択したテキスト条件と雑音のある画像とをペアリングして,効率的な無画像知識蒸留を可能にする手法であるランダム条件付けを提案する。
提案手法により,条件固有の画像を生成することなく条件空間を探索することが可能となり,生成品質と効率の両面で顕著な改善が得られた。
論文 参考訳(メタデータ) (2025-04-02T05:41:19Z) - D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens [80.75893450536577]
モデル生成能力を向上させる新しい2段階法であるD2Cを提案する。
第1段階では、小さな離散値発生器を用いて粗粒度画像特徴を表す離散値トークンをサンプリングする。
第2段階では、離散トークンシーケンスに基づいて、きめ細かい画像特徴を表す連続値トークンを学習する。
論文 参考訳(メタデータ) (2025-03-21T13:58:49Z) - Understanding the Quality-Diversity Trade-off in Diffusion Language Models [0.0]
拡散モデルは、視覚やオーディオなど、さまざまな領域にわたる連続的なデータをモデル化するために使用することができる。
最近の研究は、連続的な埋め込み空間で作業することで、テキスト生成への応用を探求している。
モデルは品質と多様性の間の本質的にのトレードオフを制御する自然な手段を欠いている。
論文 参考訳(メタデータ) (2025-03-11T17:18:01Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
学習しない反復ごとに最適なモデル更新を求めるフレームワークを提案し、両方の目的に対して単調な改善を確実にする。
論文 参考訳(メタデータ) (2024-12-09T21:36:10Z) - A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
多様な条件生成タスクを処理するための、シンプルで統一されたフレームワークを導入します。
提案手法は,異なる推論時間サンプリング方式による多目的化を実現する。
我々のモデルは、非親密なアライメントや粗い条件付けのような追加機能をサポートしています。
論文 参考訳(メタデータ) (2024-10-15T09:41:43Z) - Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
SDXLのような最先端拡散モデルに匹敵するレベルまで、非自己回帰マスク型画像モデリング(MIM)のテキスト・ツー・イメージが増大するMeissonicを提案する。
高品質なトレーニングデータを活用し、人間の嗜好スコアから得られるマイクロ条件を統合し、特徴圧縮層を用いて画像の忠実度と解像度をさらに向上する。
我々のモデルは、高画質の高精細画像を生成する際に、SDXLのような既存のモデルに適合するだけでなく、しばしば性能を上回ります。
論文 参考訳(メタデータ) (2024-10-10T17:59:17Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models [34.611309081801345]
大規模な拡散ベースのテキスト・ツー・イメージ(T2I)モデルでは、テキスト・ツー・イメージ生成に印象的な生成能力がある。
本稿では,最小限の計算量で新しいタスクにまたがって生成モデルを拡張するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-15T17:55:56Z) - Conditional Image Generation with Pretrained Generative Model [1.4685355149711303]
拡散モデルは、GANモデルと比較して高品質な画像を生成する能力で人気を集めている。
これらのモデルには膨大な量のデータ、計算資源、そして訓練を成功させるために巧妙なチューニングが必要である。
本研究では,条件付き画像生成のために,事前学習した非条件拡散モデルを活用する手法を提案する。
論文 参考訳(メタデータ) (2023-12-20T18:27:53Z) - CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster
Image Generation [49.3016007471979]
大規模な生成拡散モデルは、テキスト・ツー・イメージ生成に革命をもたらし、条件付き生成タスクに大きな可能性を秘めている。
しかし、彼らの普及は高い計算コストによって妨げられ、リアルタイムの応用が制限される。
本稿では,事前学習した潜伏拡散モデルに付加的な画像条件入力を適応させるCoDiという新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T17:59:18Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。