論文の概要: Over-the-Air Federated Learning In Broadband Communication
- arxiv url: http://arxiv.org/abs/2306.01963v1
- Date: Sat, 3 Jun 2023 00:16:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 21:02:42.742067
- Title: Over-the-Air Federated Learning In Broadband Communication
- Title(参考訳): ブロードバンド通信におけるオーバーザ・エアフェデレート学習
- Authors: Wayne Lemieux, Raphael Pinard, Mitra Hassani
- Abstract要約: Federated Learning(FL)は、プライバシ保護のための分散機械学習パラダイムで、無線エッジで動作する。
いくつかはセキュアなマルチパーティ計算に依存しており、推論攻撃に弱い可能性がある。
他のものは差分プライバシーを採用しているが、これは少数のデータに寄与する多数のパーティを扱う際のテストの精度を低下させる可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning (FL) is a privacy-preserving distributed machine learning
paradigm that operates at the wireless edge. It enables clients to collaborate
on model training while keeping their data private from adversaries and the
central server. However, current FL approaches have limitations. Some rely on
secure multiparty computation, which can be vulnerable to inference attacks.
Others employ differential privacy, but this may lead to decreased test
accuracy when dealing with a large number of parties contributing small amounts
of data. To address these issues, this paper proposes a novel approach that
integrates federated learning seamlessly into the inner workings of MIMO
(Multiple-Input Multiple-Output) systems.
- Abstract(参考訳): Federated Learning(FL)は、プライバシ保護のための分散機械学習パラダイムで、無線エッジで動作する。
クライアントは、敵や中央サーバからデータをプライベートに保ちながら、モデルトレーニングで協力することができる。
しかし、現在のFLアプローチには制限がある。
セキュアなマルチパーティ計算に依存しており、推論攻撃に弱い場合もある。
異なるプライバシを採用する場合もあるが、これは少数のデータを提供する多数のパーティを扱う場合、テスト精度を低下させる可能性がある。
そこで本研究では,MIMO(Multiple-Input Multiple-Output)システムの内部動作にフェデレーション学習をシームレスに統合する手法を提案する。
関連論文リスト
- RLSA-PFL: Robust Lightweight Secure Aggregation with Model Inconsistency Detection in Privacy-Preserving Federated Learning [13.117628927803985]
フェデレートラーニング(FL)は、ローカルモデルを共有することで、中央サーバにプライベートデータを公開することなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする。
FLでは、敵が共有モデルパラメータから機密情報を推測する可能性のあるプライバシー上の脆弱性が報告されている。
本稿では,軽量な暗号プリミティブをプライバシリスクに利用したマスキングに基づくセキュアアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2025-02-13T06:01:09Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Federated Learning in MIMO Satellite Broadcast System [0.0]
フェデレートラーニング(Federated Learning, FL)とは、クライアントのデータを敵や中央サーバから保護する分散機械学習の一種である。
既存のフェデレートされた学習手法は、推論に弱いセキュアなマルチパーティ計算(SMC)または(比較的少ないデータを持つ多数のパーティに対してテスト精度を低下させる可能性のある差分プライバシ)を使用する。
論文 参考訳(メタデータ) (2023-03-29T11:33:51Z) - Federated Nearest Neighbor Machine Translation [66.8765098651988]
本稿では,FedNN(FedNN)機械翻訳フレームワークを提案する。
FedNNは1ラウンドの記憶に基づくインタラクションを活用して、異なるクライアント間で知識を共有する。
実験の結果,FedAvgと比較して,FedNNは計算コストと通信コストを著しく削減することがわかった。
論文 参考訳(メタデータ) (2023-02-23T18:04:07Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Secure Distributed Training at Scale [65.7538150168154]
ピアの存在下でのトレーニングには、ビザンティン寛容な特殊な分散トレーニングアルゴリズムが必要である。
本稿では,コミュニケーション効率を重視したセキュアな(ビザンチン耐性)分散トレーニングのための新しいプロトコルを提案する。
論文 参考訳(メタデータ) (2021-06-21T17:00:42Z) - Constrained Differentially Private Federated Learning for Low-bandwidth
Devices [1.1470070927586016]
本稿では,新しいプライバシー保護型連合学習方式を提案する。
これは、差分プライバシーに基づく理論上のプライバシー保証を提供する。
上流と下流の帯域幅を標準のフェデレート学習と比較して最大99.9%削減する。
論文 参考訳(メタデータ) (2021-02-27T22:25:06Z) - Differentially Private Secure Multi-Party Computation for Federated
Learning in Financial Applications [5.50791468454604]
フェデレートラーニングにより、信頼されたサーバで作業する多くのクライアントが、共有機械学習モデルを共同で学習することが可能になる。
これにより機密データを露出するリスクが軽減されるが、通信されたモデルパラメータからクライアントのプライベートデータセットに関する情報をリバースすることが可能になる。
筆者らは,非専門的な聴衆にプライバシ保存型フェデレーション学習プロトコルを提示し,実世界のクレジットカード詐欺データセットにロジスティック回帰を用いてそれを実証し,オープンソースシミュレーションプラットフォームを用いて評価する。
論文 参考訳(メタデータ) (2020-10-12T17:16:27Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
フェデレーション・ラーニング(Federated Learning)とは、エッジデバイスのセットが、中央サーバのオーケストレーションの下でモデルを協調的にトレーニングする、機械学習環境である。
本稿では,モデルユーティリティの劣化を伴わずに,プライバシ問題に対処するフェデレーション学習手法を開発する。
このアプローチのエンドツーエンドのプライバシ保証を厳格に提供し、理論的収束率を分析します。
論文 参考訳(メタデータ) (2020-03-30T19:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。