Prompting Is All You Need: Automated Android Bug Replay with Large Language Models
- URL: http://arxiv.org/abs/2306.01987v3
- Date: Wed, 8 May 2024 07:36:56 GMT
- Title: Prompting Is All You Need: Automated Android Bug Replay with Large Language Models
- Authors: Sidong Feng, Chunyang Chen,
- Abstract summary: We propose AdbGPT, a new lightweight approach to automatically reproduce the bugs from bug reports through prompt engineering.
AdbGPT leverages few-shot learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning from LLMs.
Our evaluations demonstrate the effectiveness and efficiency of our AdbGPT to reproduce 81.3% of bug reports in 253.6 seconds.
- Score: 28.69675481931385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bug reports are vital for software maintenance that allow users to inform developers of the problems encountered while using the software. As such, researchers have committed considerable resources toward automating bug replay to expedite the process of software maintenance. Nonetheless, the success of current automated approaches is largely dictated by the characteristics and quality of bug reports, as they are constrained by the limitations of manually-crafted patterns and pre-defined vocabulary lists. Inspired by the success of Large Language Models (LLMs) in natural language understanding, we propose AdbGPT, a new lightweight approach to automatically reproduce the bugs from bug reports through prompt engineering, without any training and hard-coding effort. AdbGPT leverages few-shot learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning from LLMs to accomplish the bug replay in a manner similar to a developer. Our evaluations demonstrate the effectiveness and efficiency of our AdbGPT to reproduce 81.3% of bug reports in 253.6 seconds, outperforming the state-of-the-art baselines and ablation studies. We also conduct a small-scale user study to confirm the usefulness of AdbGPT in enhancing developers' bug replay capabilities.
Related papers
- Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps [23.460238111094608]
ReBL is a novel feedback-driven approach to reproduce Android bug reports.
It is more flexible and context-aware than the traditional step-by-step entity matching approach.
It has the capability of handling non-crash functional bug reports.
arXiv Detail & Related papers (2024-07-06T19:58:03Z) - Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
This paper proposes a new approach to automatically identify which change in the code caused a test to fail.
The method leverages Large Language Models (LLMs) to associate error messages with the corresponding code changes causing the failure.
Our approach reaches an accuracy of 71% in our newly created dataset, which comprises issues reported by developers at EA over a period of one year.
arXiv Detail & Related papers (2024-06-11T09:21:50Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
Research shows that grammatical mistakes in a sentence can be corrected by translating it to another language and back.
Current generative models for Automatic Program Repair (APR) are pre-trained on source code and fine-tuned for repair.
This paper proposes bypassing the fine-tuning step and using Round-Trip Translation (RTT): translation of code from one programming language to another programming or natural language, and back.
arXiv Detail & Related papers (2024-01-15T22:36:31Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench is a benchmark for Large Language Models (LLMs)
It covers four major bug categories and 18 minor types in C++, Java, and Python.
We evaluate two commercial and four open-source models in a zero-shot scenario.
arXiv Detail & Related papers (2024-01-09T15:46:38Z) - Can LLMs Demystify Bug Reports? [0.6650227510403052]
ChatGPT was able to demystify and reproduce 50% of the reported bugs.
Being able to automatically address half of the reported bugs shows promising potential in the direction of applying machine learning to address bugs with only a human-in-the-loop to report the bug.
arXiv Detail & Related papers (2023-10-10T05:07:00Z) - Too Few Bug Reports? Exploring Data Augmentation for Improved
Changeset-based Bug Localization [7.884766610628946]
We propose novel data augmentation operators that act on different constituent components of bug reports.
We also describe a data balancing strategy that aims to create a corpus of augmented bug reports.
arXiv Detail & Related papers (2023-05-25T19:06:01Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
Large language models (LLMs) have achieved impressive performance on code generation.
We propose Self- Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations.
arXiv Detail & Related papers (2023-04-11T10:43:43Z) - Auto-labelling of Bug Report using Natural Language Processing [0.0]
Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking.
In this paper, we have proposed a solution using a combination of NLP techniques.
It uses a custom data transformer, a deep neural network, and a non-generalizing machine learning method to retrieve existing identical bug reports.
arXiv Detail & Related papers (2022-12-13T02:32:42Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
arXiv Detail & Related papers (2022-11-11T16:37:33Z) - Large Language Models are Few-shot Testers: Exploring LLM-based General
Bug Reproduction [14.444294152595429]
The number of tests added in open source repositories due to issues was about 28% of the corresponding project test suite size.
We propose LIBRO, a framework that uses Large Language Models (LLMs), which have been shown to be capable of performing code-related tasks.
Our evaluation of LIBRO shows that, on the widely studied Defects4J benchmark, LIBRO can generate failure reproducing test cases for 33% of all studied cases.
arXiv Detail & Related papers (2022-09-23T10:50:47Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.