Unsupervised Low Light Image Enhancement Using SNR-Aware Swin
Transformer
- URL: http://arxiv.org/abs/2306.02082v2
- Date: Thu, 27 Jul 2023 13:59:10 GMT
- Title: Unsupervised Low Light Image Enhancement Using SNR-Aware Swin
Transformer
- Authors: Zhijian Luo, Jiahui Tang, Yueen Hou, Zihan Huang and Yanzeng Gao
- Abstract summary: Low-light image enhancement aims at improving brightness and contrast, and reducing noise that corrupts the visual quality.
We propose a dual-branch network based on Swin Transformer, guided by a signal-to-noise ratio prior map.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image captured under low-light conditions presents unpleasing artifacts,
which debilitate the performance of feature extraction for many upstream visual
tasks. Low-light image enhancement aims at improving brightness and contrast,
and further reducing noise that corrupts the visual quality. Recently, many
image restoration methods based on Swin Transformer have been proposed and
achieve impressive performance. However, on one hand, trivially employing Swin
Transformer for low-light image enhancement would expose some artifacts,
including over-exposure, brightness imbalance and noise corruption, etc. On the
other hand, it is impractical to capture image pairs of low-light images and
corresponding ground-truth, i.e. well-exposed image in same visual scene. In
this paper, we propose a dual-branch network based on Swin Transformer, guided
by a signal-to-noise ratio prior map which provides the spatial-varying
information for low-light image enhancement. Moreover, we leverage unsupervised
learning to construct the optimization objective based on Retinex model, to
guide the training of proposed network. Experimental results demonstrate that
the proposed model is competitive with the baseline models.
Related papers
- Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
flare artifacts can affect image visual quality and downstream computer vision tasks.
Current methods do not consider automatic exposure and tone mapping in image signal processing pipeline.
We propose a solution to improve the performance of lens flare removal by revisiting the ISP and design a more reliable light sources recovery strategy.
arXiv Detail & Related papers (2023-08-31T04:58:17Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
Cycle-Interactive Generative Adversarial Network (CIGAN) is capable of not only better transferring illumination distributions between low/normal-light images but also manipulating detailed signals.
In particular, the proposed low-light guided transformation feed-forwards the features of low-light images from the generator of enhancement GAN into the generator of degradation GAN.
arXiv Detail & Related papers (2022-07-03T06:37:46Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
We propose to leverage the invertible network to enhance low-light image in forward process and degrade the normal-light one inversely with unpaired learning.
In addition to the adversarial loss, we design various loss functions to ensure the stability of training and preserve more image details.
We present a progressive self-guided enhancement process for low-light images and achieve favorable performance against the SOTAs.
arXiv Detail & Related papers (2021-12-24T17:00:54Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z) - Learning an Adaptive Model for Extreme Low-light Raw Image Processing [5.706764509663774]
We propose an adaptive low-light raw image enhancement network to improve image quality.
The proposed method has the lowest Noise Level Estimation (NLE) score compared with the state-of-the-art low-light algorithms.
The potential application in video processing is briefly discussed.
arXiv Detail & Related papers (2020-04-22T09:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.