TransDocAnalyser: A Framework for Offline Semi-structured Handwritten
Document Analysis in the Legal Domain
- URL: http://arxiv.org/abs/2306.02142v1
- Date: Sat, 3 Jun 2023 15:56:30 GMT
- Title: TransDocAnalyser: A Framework for Offline Semi-structured Handwritten
Document Analysis in the Legal Domain
- Authors: Sagar Chakraborty, Gaurav Harit and Saptarshi Ghosh
- Abstract summary: We build the first semi-structured document analysis dataset in the legal domain.
This dataset combines a wide variety of handwritten text with printed text.
We propose an end-to-end framework for offline processing of handwritten semi-structured documents.
- Score: 3.5018563401895455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art offline Optical Character Recognition (OCR) frameworks
perform poorly on semi-structured handwritten domain-specific documents due to
their inability to localize and label form fields with domain-specific
semantics. Existing techniques for semi-structured document analysis have
primarily used datasets comprising invoices, purchase orders, receipts, and
identity-card documents for benchmarking. In this work, we build the first
semi-structured document analysis dataset in the legal domain by collecting a
large number of First Information Report (FIR) documents from several police
stations in India. This dataset, which we call the FIR dataset, is more
challenging than most existing document analysis datasets, since it combines a
wide variety of handwritten text with printed text. We also propose an
end-to-end framework for offline processing of handwritten semi-structured
documents, and benchmark it on our novel FIR dataset. Our framework used
Encoder-Decoder architecture for localizing and labelling the form fields and
for recognizing the handwritten content. The encoder consists of Faster-RCNN
and Vision Transformers. Further the Transformer-based decoder architecture is
trained with a domain-specific tokenizer. We also propose a post-correction
method to handle recognition errors pertaining to the domain-specific terms.
Our proposed framework achieves state-of-the-art results on the FIR dataset
outperforming several existing models
Related papers
- Multi-Field Adaptive Retrieval [39.38972160512916]
We introduce Multi-Field Adaptive Retrieval (MFAR), a flexible framework that accommodates any number of document indices on structured data.
Our framework consists of two main steps: (1) the decomposition of an existing document into fields, each indexed independently through dense and lexical methods, and (2) learning a model which adaptively predicts the importance of a field by conditioning on the document query.
We find that our approach allows for the optimized use of dense versus lexical representations across field types, significantly improves in document ranking over a number of existing retrievers, and achieves state-of-the-art performance for multi-field structured
arXiv Detail & Related papers (2024-10-26T03:07:22Z) - Contextual Document Embeddings [77.22328616983417]
We propose two complementary methods for contextualized document embeddings.
First, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss.
Second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation.
arXiv Detail & Related papers (2024-10-03T14:33:34Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - DELINE8K: A Synthetic Data Pipeline for the Semantic Segmentation of Historical Documents [0.0]
Document semantic segmentation can facilitate document analysis tasks, including OCR, form classification, and document editing.
Several synthetic datasets have been developed to distinguish handwriting from printed text, but they fall short in class variety and document diversity.
We propose the most comprehensive document semantic segmentation pipeline to date, incorporating preprinted text, handwriting, and document backgrounds from over 10 sources.
Our customized dataset exhibits superior performance on the NAFSS benchmark, demonstrating it as a promising tool in further research.
arXiv Detail & Related papers (2024-04-30T04:53:10Z) - Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction [61.998789448260005]
We propose to identify the typical structure of document within a collection.
We abstract over arbitrary header paraphrases, and ground each topic to respective document locations.
We develop an unsupervised graph-based method which leverages both inter- and intra-document similarities.
arXiv Detail & Related papers (2024-02-21T16:22:21Z) - HRDoc: Dataset and Baseline Method Toward Hierarchical Reconstruction of
Document Structures [31.868926876151342]
This paper introduces hierarchical reconstruction of document structures as a novel task suitable for NLP and CV fields.
We built a large-scale dataset named HRDoc, which consists of 2,500 multi-page documents with nearly 2 million semantic units.
We propose an encoder-decoder-based hierarchical document structure parsing system (DSPS) to tackle this problem.
arXiv Detail & Related papers (2023-03-24T07:23:56Z) - Combining Deep Learning and Reasoning for Address Detection in
Unstructured Text Documents [0.0]
We propose a hybrid approach that combines deep learning with reasoning for finding and extracting addresses from unstructured text documents.
We use a visual deep learning model to detect the boundaries of possible address regions on the scanned document images.
arXiv Detail & Related papers (2022-02-07T12:32:00Z) - Evaluation of a Region Proposal Architecture for Multi-task Document
Layout Analysis [0.685316573653194]
Mask-RCNN architecture is designed to address the problem of baseline detection and region segmentation.
We present experimental results on two handwritten text datasets and one handwritten music dataset.
The analyzed architecture yields promising results, outperforming state-of-the-art techniques in all three datasets.
arXiv Detail & Related papers (2021-06-22T14:07:27Z) - Rethinking Text Line Recognition Models [57.47147190119394]
We consider two decoder families (Connectionist Temporal Classification and Transformer) and three encoder modules (Bidirectional LSTMs, Self-Attention, and GRCLs)
We compare their accuracy and performance on widely used public datasets of scene and handwritten text.
Unlike the more common Transformer-based models, this architecture can handle inputs of arbitrary length.
arXiv Detail & Related papers (2021-04-15T21:43:13Z) - DART: Open-Domain Structured Data Record to Text Generation [91.23798751437835]
We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs)
We propose a procedure of extracting semantic triples from tables that encode their structures by exploiting the semantic dependencies among table headers and the table title.
Our dataset construction framework effectively merged heterogeneous sources from open domain semantic parsing and dialogue-act-based meaning representation tasks.
arXiv Detail & Related papers (2020-07-06T16:35:30Z) - Cross-Domain Document Object Detection: Benchmark Suite and Method [71.4339949510586]
Document object detection (DOD) is fundamental for downstream tasks like intelligent document editing and understanding.
We investigate cross-domain DOD, where the goal is to learn a detector for the target domain using labeled data from the source domain and only unlabeled data from the target domain.
For each dataset, we provide the page images, bounding box annotations, PDF files, and the rendering layers extracted from the PDF files.
arXiv Detail & Related papers (2020-03-30T03:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.