An information field theory approach to Bayesian state and parameter
estimation in dynamical systems
- URL: http://arxiv.org/abs/2306.02150v1
- Date: Sat, 3 Jun 2023 16:36:43 GMT
- Title: An information field theory approach to Bayesian state and parameter
estimation in dynamical systems
- Authors: Kairui Hao, Ilias Bilionis
- Abstract summary: This paper develops a scalable Bayesian approach to state and parameter estimation suitable for continuous-time, deterministic dynamical systems.
We construct a physics-informed prior probability measure on the function space of system responses so that functions that satisfy the physics are more likely.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical system state estimation and parameter calibration problems are
ubiquitous across science and engineering. Bayesian approaches to the problem
are the gold standard as they allow for the quantification of uncertainties and
enable the seamless fusion of different experimental modalities. When the
dynamics are discrete and stochastic, one may employ powerful techniques such
as Kalman, particle, or variational filters. Practitioners commonly apply these
methods to continuous-time, deterministic dynamical systems after discretizing
the dynamics and introducing fictitious transition probabilities. However,
approaches based on time-discretization suffer from the curse of dimensionality
since the number of random variables grows linearly with the number of
time-steps. Furthermore, the introduction of fictitious transition
probabilities is an unsatisfactory solution because it increases the number of
model parameters and may lead to inference bias. To address these drawbacks,
the objective of this paper is to develop a scalable Bayesian approach to state
and parameter estimation suitable for continuous-time, deterministic dynamical
systems. Our methodology builds upon information field theory. Specifically, we
construct a physics-informed prior probability measure on the function space of
system responses so that functions that satisfy the physics are more likely.
This prior allows us to quantify model form errors. We connect the system's
response to observations through a probabilistic model of the measurement
process. The joint posterior over the system responses and all parameters is
given by Bayes' rule. To approximate the intractable posterior, we develop a
stochastic variational inference algorithm. In summary, the developed
methodology offers a powerful framework for Bayesian estimation in dynamical
systems.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Gaussian process learning of nonlinear dynamics [0.0]
We propose a new method that learns nonlinear dynamics through a Bayesian inference of characterizing model parameters.
We will discuss the applicability of the proposed method to several typical scenarios for dynamical systems.
arXiv Detail & Related papers (2023-12-19T14:27:26Z) - Bayesian Identification of Nonseparable Hamiltonian Systems Using
Stochastic Dynamic Models [0.13764085113103217]
This paper proposes a probabilistic formulation for system identification (ID) and estimation of nonseparable Hamiltonian systems.
Nonseparable Hamiltonian systems arise in models from diverse science and engineering applications such as astrophysics, robotics, vortex dynamics, charged particle dynamics, and quantum mechanics.
arXiv Detail & Related papers (2022-09-15T23:11:11Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Probabilistic solution of chaotic dynamical system inverse problems
using Bayesian Artificial Neural Networks [0.0]
Inverse problems for chaotic systems are numerically challenging.
Small perturbations in model parameters can cause very large changes in estimated forward trajectories.
Bizarre Artificial Neural Networks can be used to simultaneously fit a model and estimate model parameter uncertainty.
arXiv Detail & Related papers (2020-05-26T20:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.