Probabilistic Solar Proxy Forecasting with Neural Network Ensembles
- URL: http://arxiv.org/abs/2306.02169v1
- Date: Sat, 3 Jun 2023 18:22:01 GMT
- Title: Probabilistic Solar Proxy Forecasting with Neural Network Ensembles
- Authors: Joshua D. Daniell and Piyush M. Mehta
- Abstract summary: Space Environment Technologies (SET) uses a linear algorithm to forecast $F_10.7 cm$.
We introduce methods using neural network ensembles with multi-layer perceptrons (MLPs) and long-short term memory (LSTMs) to improve on SET predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Space weather indices are used commonly to drive forecasts of thermosphere
density, which directly affects objects in low-Earth orbit (LEO) through
atmospheric drag. One of the most commonly used space weather proxies, $F_{10.7
cm}$, correlates well with solar extreme ultra-violet (EUV) energy deposition
into the thermosphere. Currently, the USAF contracts Space Environment
Technologies (SET), which uses a linear algorithm to forecast $F_{10.7 cm}$. In
this work, we introduce methods using neural network ensembles with multi-layer
perceptrons (MLPs) and long-short term memory (LSTMs) to improve on the SET
predictions. We make predictions only from historical $F_{10.7 cm}$ values, but
also investigate data manipulation to improve forecasting. We investigate data
manipulation methods (backwards averaging and lookback) as well as multi step
and dynamic forecasting. This work shows an improvement over the baseline when
using ensemble methods. The best models found in this work are ensemble
approaches using multi step or a combination of multi step and dynamic
predictions. Nearly all approaches offer an improvement, with the best models
improving between 45 and 55\% on relative MSE. Other relative error metrics
were shown to improve greatly when ensembles methods were used. We were also
able to leverage the ensemble approach to provide a distribution of predicted
values; allowing an investigation into forecast uncertainty. Our work found
models that produced less biased predictions at elevated and high solar
activity levels. Uncertainty was also investigated through the use of a
calibration error score metric (CES), our best ensemble reached similar CES as
other work.
Related papers
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Joint Metrics Matter: A Better Standard for Trajectory Forecasting [67.1375677218281]
Multi-modal trajectory forecasting methods evaluate using single-agent metrics (marginal metrics)
Only focusing on marginal metrics can lead to unnatural predictions, such as colliding trajectories or diverging trajectories for people who are clearly walking together as a group.
We present the first comprehensive evaluation of state-of-the-art trajectory forecasting methods with respect to multi-agent metrics (joint metrics): JADE, JFDE, and collision rate.
arXiv Detail & Related papers (2023-05-10T16:27:55Z) - Towards Coupling Full-disk and Active Region-based Flare Prediction for
Operational Space Weather Forecasting [0.5872014229110215]
We present new approaches to train and deploy an operational solar flare prediction system for $geq$M1.0-class flares.
In full-disk mode, predictions are performed on full-disk line-of-sight magnetograms using deep learning models.
In active region-based models, predictions are issued for each active region individually.
arXiv Detail & Related papers (2022-08-11T22:34:44Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Uncertainty Quantification Techniques for Space Weather Modeling:
Thermospheric Density Application [0.0]
We propose two techniques to develop nonlinear ML models to predict thermospheric density.
We show the performance for models trained on local and global datasets.
We achieve errors of 11% on independent test data with well-calibrated uncertainty estimates.
arXiv Detail & Related papers (2022-01-06T14:17:50Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Towards physically consistent data-driven weather forecasting:
Integrating data assimilation with equivariance-preserving deep spatial
transformers [2.7998963147546148]
We propose 3 components to integrate with commonly used data-driven weather prediction models.
These components are 1) a deep spatial transformer added to latent space of U-NETs to preserve equivariance, 2) a data-assimilation algorithm to ingest noisy observations and improve the initial conditions for next forecasts, and 3) a multi-time-step algorithm, improving the accuracy of forecasts at short intervals.
arXiv Detail & Related papers (2021-03-16T23:15:00Z) - Deep Learning for Post-Processing Ensemble Weather Forecasts [14.622977874836298]
We propose a mixed model that uses only a subset of the original weather trajectories combined with a post-processing step using deep neural networks.
We show that our post-processing can use fewer trajectories to achieve comparable results to the full ensemble.
arXiv Detail & Related papers (2020-05-18T14:23:26Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - Machine learning for total cloud cover prediction [0.0]
We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods.
Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill.
RF models provide the smallest increase in predictive performance, while POLR and GBM approaches perform best.
arXiv Detail & Related papers (2020-01-16T17:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.