Privacy-Preserving by Design: Indoor Positioning System Using Wi-Fi
Passive TDOA
- URL: http://arxiv.org/abs/2306.02211v1
- Date: Sat, 3 Jun 2023 23:27:38 GMT
- Title: Privacy-Preserving by Design: Indoor Positioning System Using Wi-Fi
Passive TDOA
- Authors: Mohamed Mohsen, Hamada Rizk, Moustafa Youssef
- Abstract summary: PassiFi is a novel passive Wi-Fi time-based indoor localization system that balances accuracy and privacy.
PassiFi uses a passive WiFi Time Difference of Arrival (TDoA) approach that ensures users' privacy and safeguards the integrity of their measurement data.
Evaluation in a real-world testbed demonstrates PassiFi's exceptional performance, surpassing traditional multilateration by 128%.
- Score: 2.728025635959799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Indoor localization systems have become increasingly important in a wide
range of applications, including industry, security, logistics, and emergency
services. However, the growing demand for accurate localization has heightened
concerns over privacy, as many localization systems rely on active signals that
can be misused by an adversary to track users' movements or manipulate their
measurements. This paper presents PassiFi, a novel passive Wi-Fi time-based
indoor localization system that effectively balances accuracy and privacy.
PassiFi uses a passive WiFi Time Difference of Arrival (TDoA) approach that
ensures users' privacy and safeguards the integrity of their measurement data
while still achieving high accuracy. The system adopts a fingerprinting
approach to address multi-path and non-line-of-sight problems and utilizes deep
neural networks to learn the complex relationship between TDoA and location.
Evaluation in a real-world testbed demonstrates PassiFi's exceptional
performance, surpassing traditional multilateration by 128%, achieving
sub-meter accuracy on par with state-of-the-art active measurement systems, all
while preserving privacy.
Related papers
- Time-Frequency Analysis of Variable-Length WiFi CSI Signals for Person Re-Identification [3.3743041904085125]
Person re-identification (ReID) plays an important role in security detection and people counting.
This letter introduces a method using WiFi Channel State Information (CSI), leveraging the multipath propagation characteristics of WiFi signals as a basis for distinguishing different pedestrian features.
We propose a two-stream network structure capable of processing variable-length data, which analyzes the amplitude in the time domain and the phase in the frequency domain of WiFi signals.
arXiv Detail & Related papers (2024-07-12T07:10:47Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Privacy-Preserving Intrusion Detection in Software-defined VANET using Federated Learning with BERT [0.0]
The present study introduces a novel approach for intrusion detection using Federated Learning (FL) capabilities.
FL-BERT has yielded promising results, opening avenues for further investigation in this particular area of research.
Our results suggest that FL-BERT is a promising technique for enhancing attack detection.
arXiv Detail & Related papers (2024-01-14T18:32:25Z) - Time-Selective RNN for Device-Free Multi-Room Human Presence Detection
Using WiFi CSI [9.927073290898848]
Device-free human presence detection is crucial technology for various applications, including home automation, security, and healthcare.
Recent research has explored the use of wireless channel state information extracted from commercial WiFi access points (APs) to provide detailed channel characteristics.
We propose a device-free human presence detection system for multi-room scenarios using a time-selective conditional dual feature extract recurrent network.
arXiv Detail & Related papers (2023-04-25T19:21:47Z) - Attention-Enhanced Deep Learning for Device-Free Through-the-Wall
Presence Detection Using Indoor WiFi Systems [9.087163485833054]
We propose a novel system for human presence detection using the channel state information (CSI) of WiFi signals.
Our system named attention-enhanced deep learning for presence detection (ALPD) employs an attention mechanism to automatically select informative subcarriers from the CSI data.
We evaluate the proposed ALPD system by deploying a pair of WiFi access points (APs) for collecting CSI dataset, which is further compared with several benchmarks.
arXiv Detail & Related papers (2023-04-25T19:17:36Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain.
Our method performs very well with several classical face recognition test sets.
arXiv Detail & Related papers (2022-07-15T07:15:36Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
An end-to-end WiFi signal neural network (SNN) is proposed to enable WiFi-only sensing in both line-of-sight and non-line-of-sight scenarios.
Especially, the 3D convolution module is able to explore thetemporal continuity of WiFi signals, and the feature self-attention module can explicitly maintain dominant features.
arXiv Detail & Related papers (2022-06-20T16:03:45Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.