論文の概要: Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows
- arxiv url: http://arxiv.org/abs/2306.02308v1
- Date: Sun, 4 Jun 2023 09:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 18:35:59.012551
- Title: Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows
- Title(参考訳): 時間Windowsを用いた車両経路問題の解法のためのルーレット-Wheel選択型PSOアルゴリズム
- Authors: Gautam Siddharth Kashyap, Alexander E. I. Brownlee, Orchid Chetia
Phukan, Karan Malik, Samar Wazir
- Abstract要約: 本稿では,Roulette Wheel Method (RWPSO) を用いた新しいPSO手法を提案する。
RWPSOのSolomon VRPTWベンチマークデータセットを用いた実験は、RWPSOが文学の他の最先端アルゴリズムと競合していることを示している。
- 参考スコア(独自算出の注目度): 58.891409372784516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to
reduce the cost of moving goods between several destinations while
accommodating constraints like set time windows for certain locations and
vehicle capacity. Applications of the VRPTW problem in the real world include
Supply Chain Management (SCM) and logistic dispatching, both of which are
crucial to the economy and are expanding quickly as work habits change.
Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle
Swarm Optimization (PSO) have been found to work effectively, however, they can
experience premature convergence. To lower the risk of PSO's premature
convergence, the authors have solved VRPTW in this paper utilising a novel form
of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing
experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate
that RWPSO is competitive with other state-of-the-art algorithms from the
literature. Also, comparisons with two cutting-edge algorithms from the
literature show how competitive the suggested algorithm is.
- Abstract(参考訳): 有名なVine Routing Problem with Time Windows (VRPTW) は、特定の場所のセットタイムウィンドウや車両容量などの制約を緩和しながら、複数の目的地間で商品を移動させることのコストを削減することを目的としている。
現実の世界におけるVRPTW問題の応用には、サプライチェーンマネジメント(SCM)やロジスティックディスパッチ(ロジスティックディスパッチ)がある。
したがって、VRPTW問題を解決するために、PSO(Particle Swarm Optimization)というメタヒューリスティックアルゴリズムが効果的に機能することが判明しているが、それらは早期収束を経験することができる。
本論文では,PSOの早期収束のリスクを低減するために,Roulette Wheel Method (RWPSO) を用いたPSO手法の新たな形式を活用したVRPTWの解決を行った。
RWPSOのSolomon VRPTWベンチマークデータセットを用いた計算実験は、RWPSOが文学の他の最先端アルゴリズムと競合していることを示している。
また,本論文の2つの最先端アルゴリズムとの比較により,提案アルゴリズムの競合性が示された。
関連論文リスト
- Hybrid Genetic Search for Dynamic Vehicle Routing with Time Windows [0.0]
我々は,VRPTWの解法であるHybrid Genetic Search (HGS) アルゴリズムを動的変種に適用する。
弊社のアプローチでは、これらのコンポーネントをDVRPTWに修正し、ソリューションの品質と今後の顧客の到着に対する制約のバランスを取ろうとしている。
論文 参考訳(メタデータ) (2023-07-21T11:16:49Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Learning to Solve Soft-Constrained Vehicle Routing Problems with
Lagrangian Relaxation [0.4014524824655105]
現実世界のアプリケーションにおける車両ルーティング問題(VRP)には、様々な制約が伴うことが多い。
ソフト制約付きVRPを解くために,強化学習に基づく手法を提案する。
本稿では,3種類のVRP,TSPTW(Travelling Salesman Problem with Time Windows),CVRP(Capacitated VRP),CVRPTW(Capacitated VRP with Time Windows)に適用する。
論文 参考訳(メタデータ) (2022-07-20T12:51:06Z) - Online V2X Scheduling for Raw-Level Cooperative Perception [21.099819062731463]
視界が単独の知性を制限すると、コネクテッドカーの協調的な認識が救助にやってくる。
本稿では,センサ共有スケジューリングのエネルギー最小化問題を定式化して生レベルの協調認識モデルを提案する。
本稿では,対数的性能損失を伴うオンライン学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-12T15:16:45Z) - AsySQN: Faster Vertical Federated Learning Algorithms with Better
Computation Resource Utilization [159.75564904944707]
垂直連合学習(VFL)のための非同期準ニュートン(AsySQN)フレームワークを提案する。
提案アルゴリズムは、逆ヘッセン行列を明示的に計算することなく、近似して降下ステップをスケールする。
本稿では,非同期計算を採用することにより,計算資源の有効利用が期待できることを示す。
論文 参考訳(メタデータ) (2021-09-26T07:56:10Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
本稿では,学習ニューラルの強みと動的プログラミングアルゴリズムの強みを組み合わせた深層ポリシー動的プログラミング(d pdp)を提案する。
D PDPは、例の解からエッジを予測するために訓練されたディープニューラルネットワークから派生したポリシーを使用して、DP状態空間を優先し、制限する。
本研究では,旅行セールスマン問題 (TSP) と車両ルーティング問題 (VRP) の枠組みを評価し,ニューラルネットワークが(制限された)DPアルゴリズムの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-02-23T15:33:57Z) - Dynamic RAN Slicing for Service-Oriented Vehicular Networks via
Constrained Learning [40.5603189901241]
品質の異なる車両用インターネット(IoV)サービスにおける無線アクセスネットワーク(RAN)スライシング問題について検討する。
無線スペクトルと演算資源を動的に割り当てる動的RANスライシングフレームワークを提案する。
RAWSは,ベンチマークと比較すると,要求を高い確率で満たしながら,システムコストを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2020-12-03T15:08:38Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-Agent
Reinforcement Learning Approach [9.717648122961483]
ソフトタイムウインドウ(MVRPSTW)を用いたマルチ車両ルーティング問題は、都市ロジスティクスシステムにおいて不可欠である。
従来の手法は計算効率と解の質のジレンマを引き起こす。
そこで本研究では,ルーティング問題の解決に要する時間的オフライントレーニングのメリットを即時評価する,Multi-Agent Attention Modelと呼ばれる新しい強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-13T14:26:27Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。