PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model
- URL: http://arxiv.org/abs/2306.02531v3
- Date: Fri, 22 Mar 2024 23:36:57 GMT
- Title: PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model
- Authors: Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Josh Susskind, Navdeep Jaitly,
- Abstract summary: We propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation to generate fluent text.
Results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text.
- Score: 37.2192243883707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoregressive models for text sometimes generate repetitive and low-quality output because errors accumulate during the steps of generation. This issue is often attributed to exposure bias - the difference between how a model is trained, and how it is used during inference. Denoising diffusion models provide an alternative approach in which a model can revisit and revise its output. However, they can be computationally expensive and prior efforts on text have led to models that produce less fluent output compared to autoregressive models, especially for longer text and paragraphs. In this paper, we propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation, to generate fluent text while exercising global control over paragraphs. The model achieves this by combining an autoregressive "decoding" module with a "planning" module that uses latent diffusion to generate semantic paragraph embeddings in a coarse-to-fine manner. The proposed method is evaluated on various conditional generation tasks, and results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text in an efficient manner.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Diffusion Guided Language Modeling [28.819061884362792]
For many applications it is desirable to control attributes, such as sentiment, of the generated language.
For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance.
In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties.
arXiv Detail & Related papers (2024-08-08T05:06:22Z) - Discrete Diffusion Language Model for Long Text Summarization [19.267738861590487]
We introduce a novel semantic-aware noising process that enables Transformer backbones to handle long sequences effectively.
Our approaches achieve state-of-the-art performance on three benchmark summarization datasets: Gigaword, CNN/DailyMail, and Arxiv.
arXiv Detail & Related papers (2024-06-25T09:55:22Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
Text-to-text Self-conditioned Simplex Diffusion employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.
We demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.
arXiv Detail & Related papers (2023-05-15T06:33:45Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers [50.90457644954857]
In this work, we apply diffusion models to approach sequence-to-sequence text generation.
We propose SeqDiffuSeq, a text diffusion model for sequence-to-sequence generation.
Experiment results illustrate the good performance on sequence-to-sequence generation in terms of text quality and inference time.
arXiv Detail & Related papers (2022-12-20T15:16:24Z) - Self-conditioned Embedding Diffusion for Text Generation [28.342735885752493]
Self-conditioned Embedding Diffusion is a continuous diffusion mechanism that operates on token embeddings.
We show that our text diffusion models generate samples comparable with those produced by standard autoregressive language models.
arXiv Detail & Related papers (2022-11-08T13:30:27Z) - DiffusER: Discrete Diffusion via Edit-based Reconstruction [88.62707047517914]
DiffusER is an edit-based generative model for text based on denoising diffusion models.
It can rival autoregressive models on several tasks spanning machine translation, summarization, and style transfer.
It can also perform other varieties of generation that standard autoregressive models are not well-suited for.
arXiv Detail & Related papers (2022-10-30T16:55:23Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.