Diffusion Guided Language Modeling
- URL: http://arxiv.org/abs/2408.04220v1
- Date: Thu, 8 Aug 2024 05:06:22 GMT
- Title: Diffusion Guided Language Modeling
- Authors: Justin Lovelace, Varsha Kishore, Yiwei Chen, Kilian Q. Weinberger,
- Abstract summary: For many applications it is desirable to control attributes, such as sentiment, of the generated language.
For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance.
In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties.
- Score: 28.819061884362792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current language models demonstrate remarkable proficiency in text generation. However, for many applications it is desirable to control attributes, such as sentiment, or toxicity, of the generated language -- ideally tailored towards each specific use case and target audience. For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance. In contrast, text diffusion models can easily be guided with, for example, a simple linear sentiment classifier -- however they do suffer from significantly higher perplexity than auto-regressive alternatives. In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties. Our model inherits the unmatched fluency of the auto-regressive approach and the plug-and-play flexibility of diffusion. We show that it outperforms previous plug-and-play guidance methods across a wide range of benchmark data sets. Further, controlling a new attribute in our framework is reduced to training a single logistic regression classifier.
Related papers
- Diffusion of Thoughts: Chain-of-Thought Reasoning in Diffusion Language Models [100.53662473219806]
Diffusion-of-Thought (DoT) is a novel approach that integrates diffusion models with Chain-of-Thought.
DoT allows reasoning steps to diffuse over time through a diffusion language model.
Our results demonstrate the effectiveness of DoT in multi-digit multiplication, logic, and grade school math problems.
arXiv Detail & Related papers (2024-02-12T16:23:28Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text.
This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model.
We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle.
arXiv Detail & Related papers (2023-10-23T04:35:58Z) - PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model [37.2192243883707]
We propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation to generate fluent text.
Results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text.
arXiv Detail & Related papers (2023-06-05T01:36:39Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
Text-to-text Self-conditioned Simplex Diffusion employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.
We demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.
arXiv Detail & Related papers (2023-05-15T06:33:45Z) - Self-conditioned Embedding Diffusion for Text Generation [28.342735885752493]
Self-conditioned Embedding Diffusion is a continuous diffusion mechanism that operates on token embeddings.
We show that our text diffusion models generate samples comparable with those produced by standard autoregressive language models.
arXiv Detail & Related papers (2022-11-08T13:30:27Z) - DiffusER: Discrete Diffusion via Edit-based Reconstruction [88.62707047517914]
DiffusER is an edit-based generative model for text based on denoising diffusion models.
It can rival autoregressive models on several tasks spanning machine translation, summarization, and style transfer.
It can also perform other varieties of generation that standard autoregressive models are not well-suited for.
arXiv Detail & Related papers (2022-10-30T16:55:23Z) - Collocation2Text: Controllable Text Generation from Guide Phrases in
Russian [0.0]
Collocation2Text is a plug-and-play method for automatic controllable text generation in Russian.
The method is based on two interacting models: the autoregressive language ruGPT-3 model and the autoencoding language ruRoBERTa model.
Experiments on generating news articles using the proposed method showed its effectiveness for automatically generated fluent texts.
arXiv Detail & Related papers (2022-06-18T17:10:08Z) - Attribute Alignment: Controlling Text Generation from Pre-trained
Language Models [46.19190007510232]
We propose a simple and flexible method for controlling text generation by aligning disentangled attribute representations.
In contrast to recent efforts on training a discriminator to perturb the token level distribution for an attribute, we use the same data to learn an alignment function to guide the pre-trained, non-controlled language model to generate texts with the target attribute without changing the original language model parameters.
arXiv Detail & Related papers (2021-03-20T01:51:32Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.