Spatial Implicit Neural Representations for Global-Scale Species Mapping
- URL: http://arxiv.org/abs/2306.02564v1
- Date: Mon, 5 Jun 2023 03:36:01 GMT
- Title: Spatial Implicit Neural Representations for Global-Scale Species Mapping
- Authors: Elijah Cole, Grant Van Horn, Christian Lange, Alexander Shepard,
Patrick Leary, Pietro Perona, Scott Loarie, Oisin Mac Aodha
- Abstract summary: Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
- Score: 72.92028508757281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the geographical range of a species from sparse observations is a
challenging and important geospatial prediction problem. Given a set of
locations where a species has been observed, the goal is to build a model to
predict whether the species is present or absent at any location. This problem
has a long history in ecology, but traditional methods struggle to take
advantage of emerging large-scale crowdsourced datasets which can include tens
of millions of records for hundreds of thousands of species. In this work, we
use Spatial Implicit Neural Representations (SINRs) to jointly estimate the
geographical range of 47k species simultaneously. We find that our approach
scales gracefully, making increasingly better predictions as we increase the
number of species and the amount of data per species when training. To make
this problem accessible to machine learning researchers, we provide four new
benchmarks that measure different aspects of species range estimation and
spatial representation learning. Using these benchmarks, we demonstrate that
noisy and biased crowdsourced data can be combined with implicit neural
representations to approximate expert-developed range maps for many species.
Related papers
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia.
Our framework maps locations, species, and text descriptions into a common space, enabling zero-shot range estimation from textual descriptions.
Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data.
arXiv Detail & Related papers (2024-10-14T17:22:55Z) - Generating Binary Species Range Maps [12.342459602972609]
Species distribution models (SDMs) and, more recently, deep learning-based variants offer a potential automated alternative.
Deep learning-based SDMs generate a continuous probability representing the predicted presence of a species at a given location.
We evaluate different approaches for automatically identifying the best thresholds for binarizing range maps using presence-only data.
arXiv Detail & Related papers (2024-08-28T17:17:20Z) - LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
We focus on the problem of species distribution modeling using global-scale presence-only data.
To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model.
We propose a novel proximity-aware evaluation metric that enables evaluating species distribution models.
arXiv Detail & Related papers (2023-12-13T18:11:37Z) - Active Learning-Based Species Range Estimation [20.422188189640053]
We propose a new active learning approach for efficiently estimating the geographic range of a species from a limited number of on the ground observations.
We show that it is possible to generate this candidate set of ranges by using models that have been trained on large weakly supervised community collected observation data.
We conduct a detailed evaluation of our approach and compare it to existing active learning methods using an evaluation dataset containing expert-derived ranges for one thousand species.
arXiv Detail & Related papers (2023-11-03T17:45:18Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Species196: A One-Million Semi-supervised Dataset for Fine-grained
Species Recognition [30.327642724046903]
Species196 is a large-scale semi-supervised dataset of 196-category invasive species.
It collects over 19K images with expert-level accurate annotations Species196-L, and 1.2M unlabeled images of invasive species Species196-U.
arXiv Detail & Related papers (2023-09-25T14:46:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
Climate change is a major driver of biodiversity loss.
There are significant knowledge gaps about the distribution of species.
We propose an approach leveraging computer vision to improve species distribution modelling.
arXiv Detail & Related papers (2023-05-01T20:27:11Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.