Few-shot Species Range Estimation
- URL: http://arxiv.org/abs/2502.14977v1
- Date: Thu, 20 Feb 2025 19:13:29 GMT
- Title: Few-shot Species Range Estimation
- Authors: Christian Lange, Max Hamilton, Elijah Cole, Alexander Shepard, Samuel Heinrich, Angela Zhu, Subhransu Maji, Grant Van Horn, Oisin Mac Aodha,
- Abstract summary: Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts.<n>We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data.<n>During inference, our model takes a set of spatial locations as input, along with optional metadata such as text or an image, and outputs a species encoding that can be used to predict the range of a previously unseen species in feed-forward manner.
- Score: 61.60698161072356
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts. By mapping the spatial ranges of all species, we would obtain deeper insights into how global biodiversity is affected by climate change and habitat loss. However, accurate range estimates are only available for a relatively small proportion of all known species. For the majority of the remaining species, we often only have a small number of records denoting the spatial locations where they have previously been observed. We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data. During inference, our model takes a set of spatial locations as input, along with optional metadata such as text or an image, and outputs a species encoding that can be used to predict the range of a previously unseen species in feed-forward manner. We validate our method on two challenging benchmarks, where we obtain state-of-the-art range estimation performance, in a fraction of the compute time, compared to recent alternative approaches.
Related papers
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia.<n>Our framework maps locations, species, and text descriptions into a common space, enabling zero-shot range estimation from textual descriptions.<n>Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data.
arXiv Detail & Related papers (2024-10-14T17:22:55Z) - Generating Binary Species Range Maps [12.342459602972609]
Species distribution models (SDMs) and, more recently, deep learning-based variants offer a potential automated alternative.
Deep learning-based SDMs generate a continuous probability representing the predicted presence of a species at a given location.
We evaluate different approaches for automatically identifying the best thresholds for binarizing range maps using presence-only data.
arXiv Detail & Related papers (2024-08-28T17:17:20Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
Climate change is a major driver of biodiversity loss.
There are significant knowledge gaps about the distribution of species.
We propose an approach leveraging computer vision to improve species distribution modelling.
arXiv Detail & Related papers (2023-05-01T20:27:11Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
We show that it is possible to transfer the knowledge existing in dense pose recognition for humans, as well as in more general object detectors and segmenters, to the problem of dense pose recognition in other classes.
We do this by establishing a DensePose model for the new animal which is also geometrically aligned to humans.
We also introduce two benchmark datasets labelled in the manner of DensePose for the class chimpanzee and use them to evaluate our approach.
arXiv Detail & Related papers (2020-02-28T21:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.