Networked Communication for Decentralised Agents in Mean-Field Games
- URL: http://arxiv.org/abs/2306.02766v5
- Date: Thu, 13 Mar 2025 14:14:01 GMT
- Title: Networked Communication for Decentralised Agents in Mean-Field Games
- Authors: Patrick Benjamin, Alessandro Abate,
- Abstract summary: We introduce networked communication to the mean-field game framework.<n>We prove that our architecture has sample guarantees bounded between those of the centralised- and independent-learning cases.<n>We show that our networked approach has significant advantages over both alternatives in terms of robustness to update failures and to changes in population size.
- Score: 59.01527054553122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce networked communication to the mean-field game framework, in particular to oracle-free settings where $N$ decentralised agents learn along a single, non-episodic run of the empirical system. We prove that our architecture has sample guarantees bounded between those of the centralised- and independent-learning cases. We provide the order of the difference in these bounds in terms of network structure and number of communication rounds, and also contribute a policy-update stability guarantee. We discuss how the sample guarantees of the three theoretical algorithms do not actually result in practical convergence. We therefore show that in practical settings where the theoretical parameters are not observed (leading to poor estimation of the Q-function), our communication scheme considerably accelerates learning over the independent case, often performing similarly to a centralised learner while removing the restrictive assumption of the latter. We contribute further practical enhancements to all three theoretical algorithms, allowing us to present their first empirical demonstrations. Our experiments confirm that we can remove several of the theoretical assumptions of the algorithms, and display the empirical convergence benefits brought by our new networked communication. We additionally show that our networked approach has significant advantages over both alternatives in terms of robustness to update failures and to changes in population size.
Related papers
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - Network Topology Inference from Smooth Signals Under Partial Observability [17.491343739469627]
Inferring network topologies from smooth signals with partially observed nodes is a significant problem in data science and engineering.
We propose a first-order algorithmic framework that includes two variants: one based on column sparsity regularization and the other on a low-rank constraint.
We establish theoretical convergence guarantees and demonstrate the linear convergence rate of our algorithms.
arXiv Detail & Related papers (2024-10-08T06:00:04Z) - Distributed Event-Based Learning via ADMM [11.461617927469316]
We consider a distributed learning problem, where agents minimize a global objective function by exchanging information over a network.
Our approach has two distinct features: (i) It substantially reduces communication by triggering communication only when necessary, and (ii) it is agnostic to the data-distribution among the different agents.
arXiv Detail & Related papers (2024-05-17T08:30:28Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Revisiting Deep Semi-supervised Learning: An Empirical Distribution
Alignment Framework and Its Generalization Bound [97.93945601881407]
We propose a new deep semi-supervised learning framework called Semi-supervised Learning by Empirical Distribution Alignment (SLEDA)
We show the generalization error of semi-supervised learning can be effectively bounded by minimizing the training error on labeled data.
Building upon our new framework and the theoretical bound, we develop a simple and effective deep semi-supervised learning method called Augmented Distribution Alignment Network (ADA-Net)
arXiv Detail & Related papers (2022-03-13T11:59:52Z) - Finite-Time Consensus Learning for Decentralized Optimization with
Nonlinear Gossiping [77.53019031244908]
We present a novel decentralized learning framework based on nonlinear gossiping (NGO), that enjoys an appealing finite-time consensus property to achieve better synchronization.
Our analysis on how communication delay and randomized chats affect learning further enables the derivation of practical variants.
arXiv Detail & Related papers (2021-11-04T15:36:25Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Decentralized Deep Learning using Momentum-Accelerated Consensus [15.333413663982874]
We consider the problem of decentralized deep learning where multiple agents collaborate to learn from a distributed dataset.
We propose and analyze a novel decentralized deep learning algorithm where the agents interact over a fixed communication topology.
Our algorithm is based on the heavy-ball acceleration method used in gradient-based protocol.
arXiv Detail & Related papers (2020-10-21T17:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.