Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration
- URL: http://arxiv.org/abs/2410.07272v1
- Date: Wed, 9 Oct 2024 06:17:16 GMT
- Title: Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration
- Authors: Qinglun Li, Miao Zhang, Yingqi Liu, Quanjun Yin, Li Shen, Xiaochun Cao,
- Abstract summary: We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
- Score: 66.43954501171292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized Federated Learning has emerged as an alternative to centralized architectures due to its faster training, privacy preservation, and reduced communication overhead. In decentralized communication, the server aggregation phase in Centralized Federated Learning shifts to the client side, which means that clients connect with each other in a peer-to-peer manner. However, compared to the centralized mode, data heterogeneity in Decentralized Federated Learning will cause larger variances between aggregated models, which leads to slow convergence in training and poor generalization performance in tests. To address these issues, we introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata. It consists of two main components: the Moreau envelope function, which primarily addresses parameter inconsistencies among clients caused by data heterogeneity, and Nesterov's extrapolation step, which accelerates the aggregation phase. Theoretically, we prove the optimization error bound and generalization error bound of the algorithm, providing a further understanding of the nature of the algorithm and the theoretical perspectives on the hyperparameter choice. Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions. Furthermore, we also experimentally verify the theoretical properties of DFedCata.
Related papers
- Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information [6.767885381740953]
Federated learning has emerged as a distributed optimization paradigm.
We propose a novel modified framework wherein each client locally performs a perturbed gradient step.
We show that our algorithm speeds convergence up to a margin of 30 global rounds compared with FedAvg.
arXiv Detail & Related papers (2024-10-07T23:14:05Z) - NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel [27.92271597111756]
Decentralized federated learning (DFL) is a collaborative machine learning framework for training a model across participants without a central server or raw data exchange.
Recent work has shown that the neural tangent kernel (NTK) approach, when applied to federated learning in a centralized framework, can lead to improved performance.
We propose an approach leveraging the NTK to train client models in the decentralized setting, while introducing a synergy between NTK-based evolution and model averaging.
arXiv Detail & Related papers (2024-10-02T18:19:28Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - On the Communication Complexity of Decentralized Bilevel Optimization [40.45379954138305]
We propose two novel decentralized bilevel gradient descent algorithms based on simultaneous and alternating update strategies.
Our algorithms can achieve faster convergence rates and lower communication costs than existing methods.
This is the first time such favorable theoretical results have been achieved with mild assumptions in the heterogeneous setting.
arXiv Detail & Related papers (2023-11-19T14:56:26Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - COKE: Communication-Censored Decentralized Kernel Learning [30.795725108364724]
Multiple interconnected agents aim to learn an optimal decision function defined over a reproducing kernel Hilbert space by jointly minimizing a global objective function.
As a non-parametric approach, kernel iteration learning faces a major challenge in distributed implementation.
We develop a communication-censored kernel learning (COKE) algorithm that reduces the communication load of DKLA by preventing an agent from transmitting at every generalization unless its local updates are deemed informative.
arXiv Detail & Related papers (2020-01-28T01:05:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.